
Disturbance evolution in the near-wake
behind a flat plate

Diplomarbeit
von

cand. aer. Janis Mühlratzer

durchgeführt am
Institut für Aerodynamik und Gasdynamik

der Universität Stuttgart
und an der

Cardi� University
School of Mathematics

Stuttgart /Cardi�, im März 2007

Pfaffenwaldring 21 · 70550 Stuttgart Apl. Prof. Dr.-Ing. Ulrich Rist

Diplomarbeit für Herrn cand. aer. Janis Mühlratzer:

 ”Disturbance evolution in the near-wake behind a flat plate“
A number of recent theoretical studies1,2,3 have considered the behaviour of disturbances in a two-
dimensional thin wake formed behind a streamlined body. The absolute or convective nature of the
linear instability, together with some effects of nonlinearity, have been investigated using various
asymptotic approximations for the flow at high Reynolds numbers. For example, Smith, Bowles and
Li3 showed that in the near-wake region just aft of the trailing edge, nonlinearity could provoke the
upstream propagation of inviscid forms of disturbance.

For the present work the velocity-vorticity method developed by Davies and Carpenter4,5 is made
available to carry out direct numerical simulations. The main intention is to further investigate, at
finite Reynolds numbers, the evolution of two-dimensional disturbances in a two-dimensional near-
wake behind a streamlined body. In particular, model problems involving the spatiotemporal
development of initially localized free disturbances in the near-wake behind an aligned flat plate will
be studied. The computation of the basic state in the vicinity of the trailing edge of the plate will
first be validated by making careful comparisons with the structures obtained from asymptotic
analysis. For this the influence of the Reynolds number is to be shown.

In a second part of the work a stability analysis of the obtained velocity profiles is to be performed
and compared to the results for analytical velocity profiles of the sech2(y)-type. An appropriate
scheme to solve the Orr-Sommerfeld equation will be provided.

Literatur
1. Woodley B. M. and Peake N.: Global linear stability analysis of thin aerofoil wakes, J. Fluid

Mech. 339 (1997) 239-260.
2. Turkyilmazaglu M., Gajjar J. S. B. and Ruban A. I.: The Absolute Instability of Thin Wakes

in an Incompressible/Compressible Fluid, Theoret. Comput. Fluid Dynamics 13 (1999) 91-
114.

3. Smith F. T., Bowles R. G. A. and Li L.: Nonlinear effects in absolute and convective insta-
bilities of a near-wake, Eur. J. Mech. B - Fluids 19 (2000) 173-211.

4. Davies C. and Carpenter P. W.: A Novel Velocity-Vorticity Formulation of the Navier-Stokes
Equations with Applications for Boundary Layer Disturbance Evolution, J. Comp. Phys. 172
119-165.

5. Bowles R. I., Davies C. and Smith F. T.: On the spiking stages in deep transition and un-
steady separation, J. Eng. Math. (2003) in press.

Betreuer: Ulrich Rist Stuttgart,
 Christopher Davies, School of Mathematics,
 Cardiff University

Ausgabedatum: 1.10.2006
Abgabedatum: 31.3.2007 apl. Prof. Dr.-Ing. Ulrich Rist

Übersicht

In dieser Arbeit wird die Untersuchung der Störungsausbreitung in der Nachlaufströmung
einer ebenen Platte über zwei Wege angegangen. Direkte numerische Simulation der
Strömung ist eine Methode, die jedoch nicht zum Abschluÿ gebracht werden konnte, da
ein gänzlich stabiler Lauf des Codes, der für diese Simulationen zur Verfügung stand
nicht erreicht werden konnte. Die zweite Variante ist, die Orr-Sommerfeld-Gleichung,
sowohl für eine Nachlaufströmung aus der numerischen Simulation, als auch für einen
analytisch de�nierten sech2-förmigen Nachlauf, zu lösen.

Nach der Vorstellung der grundlegenden Eigenschaften der Strömung und der zugrun-
deliegenden Gleichungen werden die numerischen Methoden und das Lösungsverfahren
des Codes aufgezeigt. Weiterhin werden Änderungen und Erweiterungen des Codes
und neu erstellte Programme für die Datenaufbereitung dargestellt. Anschlieÿend wird
dargelegt, welche Parametereinstellungen für die Simulationen gewählt wurden, um die
Suche nach der Ursache der künstlichen Instabilität zu unterstützen.

Ebenfalls wird die Grundströmung aus der Simulation mit den Vorhersagen der asymp-
totischen Theorie (Dreidecktheorie, welche kurz erläutert wird) für den Bereich um die
Hinterkante der Platte verglichen, um die Qualität und Glaubwürdigkeit der vom Code
erzeugten Strömung zu überprüfen.

Schlieÿlich wird das Verfahren zur Lösung des Eigenwertproblems mit einem linearen
Löser für die zwei Grundströmungen umrissen. Die Ergebnisse dieser Eigenwertsuche wer-
den dargestellt, die Stabilität der zwei Strömungstypen verglichen und die Abhängigkeit
der Stabilitätseigenschaften von verschiedenen Parametern diskutiert.

iii

Abstract

The investigation of the disturbance evolution in the near-wake behind a �at plate is
approached via two ways in this thesis. The direct numerical simulation of the �ow is
one method, which could not be brought to an end because the code available for this
simulation could not be made to run entirely stable. The second technique is to solve the
Orr-Sommerfeld equation for both a wake �ow obtained from numerical simulation
and a wake �ow de�ned by an analytical function of the sech2-type.

After presenting the basic �ow properties and the governing equations for the �ow,
the numerical approach and the solution scheme of the code are reviewed. Furthermore,
changes and extensions to this code as well as separate programmes written for post-
processing are presented. Subsequently it is shown under which settings the simulations
were actually carried out to support the search for the root of the arti�cial instability.

The basic state from the simulation is compared with what asymptotical theory (triple-
deck theory, which is reviewed in short) predicts for the region around the trailing edge
of the plate to examine the quality and credibility of the �ow the code produces.

Finally, the approach to solving the eigenvalue problem for the two basic �ow types
using a linear solver is outlined. The results of the eigenvalue solving are presented,
the stability of the two wake �ow types is compared and dependence of the stability
properties from several parameters is discussed.

iv

Contents

Aufgabenstellung ii

Übersicht iii

Abstract iv

Table of Contents v

List of Figures viii

List of Tables x

Nomenclature xi

I. Introduction 1
The Subject . 2
Objective of This Thesis . 2

II. Main Part 4

1. Theoretical Background 5
1.1. Basic Flow Properties . 5

1.1.1. Flow Decomposition and Terminology 5
1.1.2. Non-dimensionalisation of Variables 7
1.1.3. Reynolds Number . 8

1.2. Governing Equations . 8
1.2.1. Navier-Stokes Equations in Velocity-Vorticity Formulation . . . 8
1.2.2. Equivalence with the Navier-Stokes Equations in Primitive Vari-

ables Formulation . 10
1.3. Boundary Conditions and Symmetry . 13

1.3.1. Symmetric and Antisymmetric Decomposition 13
1.3.2. Derivation of the Boundary Conditions 14

1.4. Boundary Layer Thickness . 17

v

1.5. Reynolds Number Relations . 18
1.6. Base Flow Calculation . 19
1.7. Wake Flow and Prescribed Mean Flow . 19
1.8. Stability of Fluid Flow . 20

1.8.1. Modal Expansion . 20
1.8.2. Stability Analysis . 22
1.8.3. Spatial and Temporal Stability . 23

2. Numerical Approach 24
2.1. Discretisation . 24

2.1.1. Streamwise Discretisation and Timestepping 24
2.1.2. Wall-Normal Discretisation . 24

2.2. Solution Scheme of the PCNAVWAKEBD Code 26
2.2.1. Predictor Step . 26
2.2.2. Solution of the Poisson Equation 27
2.2.3. Corrector Step . 28

2.3. Introduction of Disturbances . 29
2.4. Symmetric and Antisymmetric Decomposition 30
2.5. In�ow and Out�ow Conditions . 30
2.6. PRESCMF Wake�ow Module . 31
2.7. Other Extensions and Changes to the PCNAVWAKE Programme Code 32
2.8. Post-processing Programmes . 34

3. Realisation of Simulations 35
3.1. Choice of Numerical Parameters . 35

3.1.1. Stream-wise Grid Step Size and Time Step Size 36
3.1.2. Domain Length and Forcing Location 36
3.1.3. Forcing Length Scale and Mapping Constant 36
3.1.4. Number of Iterations per Time Step 36
3.1.5. Order of Chebyshev Polynomials 37
3.1.6. Out�ow Condition . 37
3.1.7. Relaxation Parameter and Initial Value for Next Time Step 38
3.1.8. Forcing Amplitude . 38

3.2. Implementation for Grid Computing . 39
3.3. Identi�cation of Wavenumber . 40
3.4. Examples of Physical Interpretations . 41

4. Trailing Edge Structure 44
4.1. Theoretical Reasoning . 44
4.2. Triple-Deck Scalings . 45
4.3. Comparison of Numerical Results with Asymptotic Theory 47

4.3.1. Scaling and Structures . 47
4.3.2. Centreline Velocity . 47

vi

4.3.3. Pressure . 48

5. Stability Analysis 53
5.1. Idea and Approach . 53
5.2. Numerical Method . 55
5.3. Realisation of Numerical Analysis . 56
5.4. Results . 56

5.4.1. Simulated and Prescribed Flow Stability Properties 58
5.4.2. Variation with Pro�le Velocity Ratio 59
5.4.3. Reynolds Number Dependence 60
5.4.4. Mach Number Dependence . 62
5.4.5. Eigenfunctions . 62

5.5. Further Reading . 63

6. Conclusion and Outlook 69

III. Résumé 70

Bibliography 72

Appendix A1
A.1. PRESCMF Module Code . A1
A.2. Unix Shell Script for Launching Condor Grid Computing Jobs A3

A.2.1. batchcmd.sh . A3
A.2.2. inputbatch.dat . A5

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code A5
A.3.1. outputall Module Code . A5
A.3.2. startupparams Module Code . A14

A.4. POSTPROCESSING Programme Code . A18
A.5. GATHERING Programme Code . A28
A.6. Unix Shell Script for LINSTAB Runs and Processing Associated Data . . . A33

A.6.1. batchlin.sh Script to be Performed on a1.hww.de A33
A.6.2. kc.sh Script to be Performed on a1.hww.de A34
A.6.3. iagcp.sh Script to be Performed on a1.hww.de A34
A.6.4. catchiag.sh Script to be Performed on cipserv.iag.uni-stuttgartA35

vii

List of Figures

1.1. The domain of the simulations including the �at plate. 6
1.2. u-velocity pro�les at various x-stations as resulting from simulation at

Re = 1000 and with a trailing edge position of xTE = 200, and as obtained
with prescribed analytic mean �ow. 21

2.1. Distribution of the bu�er function m(x) for two sets of adjusting parame-
ters at lB = 80 and xend = 600. 32

3.1. Absolute value of the perturbation vorticity versus streamwise coordinate
at di�erent times and for di�erent numbers of iterations per time step for
∆x = 1.0, ∆t = 0.5, Ny = 64, Re = 1000, Q = 0.9, ω = 0.4. 37

3.2. Absolute value of the perturbation vorticity versus streamwise coordinate
at di�erent times and for two orders of Chebyshev polynomials for ∆x =
1.0, ∆t = 0.5, Nit = 4, Re = 1000, Q = 0.3, ω = 0.4. 38

3.3. Absolute value of the perturbation vorticity versus streamwise coordinate
at di�erent times and for two orders of Chebyshev polynomials for Nit =
16, other parameters as above. 39

3.4. Example of an interpolation of data points for �nding real and imaginary
wavenumber. 41

4.1. Scaled streamwise velocity in the upper deck for several Reynolds num-
bers in the scaled coordinates. 48

4.2. Scaled normal velocity in the main deck for several Reynolds numbers
in the scaled coordinates. 49

4.3. Scaled pressure in the lower deck for several Reynolds numbers in the
scaled coordinates. 50

4.4. Centreline streamwise velocity for several Reynolds numbers and as cal-
culated with asymptotic theory. 51

4.5. Pressure value in lower deck for several Reynolds numbers and as calcu-
lated with asymptotic theory. 52

5.1. Streamwise velocity U t for several x-positions from simulation at Re =
1000 and t = 400. 54

viii

5.2. Streamwise velocity U t for several x-positions from simulation at Re = 500
and t = 400. 55

5.3. Spectrum of the prescribed �ow for two Reynolds numbers at αr =
3 · 10−2 and Q = 0.75. 57

5.4. Instable eigenvalues of the simulated and the prescribed (Q = 0.6799) �ow
at Re = 500. 58

5.5. Instable eigenvalues of the simulated and the prescribed (Q = 0.75) �ow
at Re = 1000. 59

5.6. Instable eigenvalues of the prescribed �ow at Re = 500 and di�erent pro�le
veloctiy ratios. 60

5.7. Instable eigenvalues of the prescribed �ow at Re = 1000 and di�erent
pro�le veloctiy ratios. 61

5.8. Instable eigenvalues of the prescribed �ow at di�erent Reynolds numbers
and Q = 0.75. 62

5.9. Instable eigenvalues of the simulated �ow at di�erent Reynolds numbers. 63
5.10. Instable eigenvalues of the prescribed �ow at Re = 1000, Q = 0.75 and

di�erent Mach numbers. 64
5.11. Amplitude and phase of the eigenfunction of the streamwise velocity u in

the prescribed mean �ow for the most instable varicose eigenvalue ωr =
4.3788 · 10−2, ωi = 6.4259 · 10−3 and the associated sinuous eigenvalue
ωr = 3.5888 · 10−2, ωi = 6.3778 · 10−4 at αr = 6 · 10−2, Re = 1000, Q = 0.6. 65

5.12. Amplitude and phase of the eigenfunction of the streamwise velocity u in
the prescribed mean �ow at Q = 0.75, αr = 1 · 10−2 and two Reynolds
numbers for the respective varicose eigenvalues. 68

ix

List of Tables

2.1. Exemplary ppinput.dat �le. 34

3.1. Print-out of results from the ��t� function for exemplary data. 42
3.2. Dimensionalised values of the �ow of air and of water at two di�erent

free-stream velocities, for two di�erent disturbance frequencies and at �ve
di�erent Reynolds numbers. 43

5.1. Eigenvalues of the simulated and the prescribed (Q = 0.6799) �ow at
Re = 500 and corresponding ratios and di�erences. 66

5.2. Selected instable eigenvalues of the prescribed �ow at Re = 500 and dif-
ferent pro�le velocity ratios. 67

x

Nomenclature

The dimension is given only for variables also appearing in dimensional form in this thesis.
The dimension only applies to the dimensional usage of a variable, which will be denoted
by an asterisk extending the symbol.

A [-] General variable
A [-] Slip velocity
a [-] General variable
Af [m

s2
] Forcing amplitude

b [-] General variable
c [-] Phase velocity
cph [-] Real phase velocity
d [-] General variable
e [-] Parameter of the bu�er ramp-down function
F [-] sin transform
f [-] Blasius function
fb [-] Body force
g [-] Parameter of the bu�er ramp-down function
h [-] Interpolation function
i [-] Imaginary number
i [-] Iteration step index
j [-] Wall-normal step index
k [-] Streamwise step index
` [m] Length
l [-] Time step index
l [m] Stretching parameter
lB [-] Bu�er length
lxf [-] Forcing x-scaling
lyf [-] Forcing y-scaling
m [-] Bu�er ramp-down function
m [-] Chebyshev coe�cient index
N [-] Accumulative right-hand side quantity of vorticity transport equa-

tion
n [-] General index
Nit [-] Number of iterations

xi

Nx [-] Number of streamwise grid points
Ny [-] Number of wall-normal grid points /Chebyshev order
O [-] Order of
P [Pa] Base �ow pressure
p [-] Pro�le parameter
p [Pa] Perturbation pressure
Q [-] Pro�le velocity ratio
Re [-] Reynolds number
rt [-] Forcing scaling function in t
rx [-] Forcing scaling function in x
ry [-] Forcing scaling function in y
T [-] Chebyshev coe�cient
T [s] Total time / periodic time
t [s] Time
~U [ms] Base �ow velocity vector
~u [ms] Perturbation velocity vector
U [ms] Streamwise base �ow velocity
u [m] Streamwise perturbation velocity
V [ms] Normal base �ow velocity
v [ms] Normal perturbation velocity
x [m] Streamwise dimension
xend [-] Out�ow x-location
xf [-] Forcing x-location
xTE [-] Trailing edge x-location
y [m] Normal dimension

α [-] Wavenumber
β [-] General multiple
χ [-] Triple-deck region length
δ [m] Characteristic length: displacement thickness or wake half-width
ε [-] Triple-deck constant
φ [-] Eigenfunction
ϕ [-] Phase shift
γ [-] Euclidean distance of the eigenvalues
η [-] Blasius variable
η [kg

m s] Dynamic viscosity
λ [-] Wavelength
ν [m

2

s] Kinematic viscosity
ψ [-] Perturbation streamfunction
Ψ [-] Base �ow streamfunction
ρ [kg

m3] Density
% [-] Relaxation parameter

xii

ϑ [-] Intermediate wall-normal coordinate
ω [rad

s] (Angular) frequency
ωz [m

s2
] Perturbation vorticity

Ωz [m
s2
] Base �ow vorticity

ζ [-] Mapped wall-normal coordinate

∞ [-] Free stream variable

c [-] Complex

r [-] Real

i [-] Imaginary

pert [-] Perturbation value
[-] Lower half of domain

[y] [-] In y-coordinates

[η] [-] In η-coordinates

∗ [-] Dimensional variable
t [-] Total variable
ˆ [-] Symmetric part
ˇ [-] Antisymmetric part
′ [-] First total derivative with respect to y
˜ [-] Predictor value
¯ [-] Upper half of domain
˘ [-] Iterated value
L [-] Lower deck perturbation variable
M [-] Main deck perturbation variable
U [-] Upper deck perturbation variable

xiii

Part I.

Introduction

1

The Subject

Studies of disturbance evolution in �uid �ow over and behind streamlined bodies are of
high importance to many domains of �uid dynamics. Practical phenomena like transition
and turbulence, which are crucially in�uencing the �ow characteristics of a given �ow
con�guration, are determined by the stability properties of the �ow under the given
conditions. Accordingly, qualities like load distribution, manoeuvrability and drag of air,
ground and water vehicles are related to the question of hydrodynamic stability.

Besides laboratory experiments and several types of theoretical analysis, numerical sim-
ulation is a competitive and powerful way to investigate disturbance evolution. Numer-
ical simulations are not only relatively cheaper, quicker to set up and better repeatable
than physical experiments, but also allow to conduct �experiments� in laminar �ow at
Reynolds numbers that naturally would come along with turbulent �ow. The adaptabil-
ity to nearly any arbitrary geometry as well as discretionary inclusion or elimination of
three-dimensional e�ects and of non-linear e�ects are other advantages of computational
�uid dynamics.

The basic idea to the numerical examination of disturbance evolution like it should be
pursued in this thesis is to simulate a stable basic wake �ow of a �at plate at a �xed
Reynolds number and to introduce small oscillating disturbances at a certain point in
space, with de�ned frequency and amplitude. Repeating this with varying parameters
within a range of values yields the quantitative correlation of stability behaviour with
each of the parameters.

Objective of This Thesis

The original scope of this thesis was two-fold: �rst, a code developed at Cardi� University
School of Mathematics, proven and used for boundary-layer �ow at several con�gurations
and adapted to allow the inclusion of a trailing edge, shall be tested and validated to
simulate disturbance evolution in the wake of a �at plate properly. Second, the stability
properties of the resulting wake �ow shall be examined in detail and compared on the
one hand with known results from literature and on the other hand with the stability
behaviour of a prescribed mean �ow � given by an analytic function reproducing the wake
�ow velocity pro�le shape, for which reference stability properties can even be derived
analytically and are available in literature.

During the e�orts to test the code provided it turned out that with any disturbance
introduced the simulation becomes numerically instable and quickly leads to unbounded
values of the �ow variables for any circumstances but the undisturbed base �ow. Though
intense and exhausting search for the reason for this instability was done, it was not
possible to �nd the cause. Reconstruction and detailed analysis of every part of this
complex code is a task on its own for a separate study.

2

Unfortunately, much of the work done in preparation for the numerical stability re-
search could not be used subsequently due the fact that no stable simulation could be
obtained. Nevertheless these considerable e�orts shall be presented here, because they
represent the major part of the work done and can serve as a helpful basis for a new
attempt to use the code for the stability analysis once numerical stability is achieved.
And yet it remains a scope of this thesis to present the general approach to the problem,
the mathematical foundations of the code used and the basics of stability analysis.

As an alternative way to achieve insight into the stability of the �ow under consid-
eration, in spite of the unavailability of the direct numerical simulation, we will go via
solving the underlying eigenvalue problem. For this, a versatile numerical solver, in the
con�guration used here actually solving the Orr-Sommerfeld equation and provided
by Institut für Aerodynamik und Gasdynamik der Universität Stuttgart, is used. The
solver delivers � after adaptation and parameter tuning � the eigenvalues for the given
�ow con�guration, using the mean �ow obtained from running the original code as well
as the prescribed mean �ow. With the results from this eigenvalue analysis an important
and helpful basis of information is at hand for the assessment of the stability behaviour
of the direct numerical simulation. When this can be performed one day, a reference of
the stability properties for the �ow under consideration is available from a set-up clear
of numerical simulation hitches.

3

Part II.

Main Part

4

1. Theoretical Background

This chapter shall present the basic �ow properties, the governing equations for the �ow

and basics of �uid �ow stability. These basics apply and are relevant independently of

the type of the further approach to the stability analysis (direct numerical simulation or

eigenvalue solving).

1.1. Basic Flow Properties

Our simulation �arena� (Fig. 1.1 (p. 6)) is the �ow (i) over an aligned �at plate and (ii)
in the wake of this plate with a physical domain in�nitely stretching to either side of the
plate / centreline. The domain is limited to a settable length in the direction along the
plate. The �ow is assumed to be two-dimensional and nonlinear e�ects shall be resolved
by the calculations.

We aim for direct numerical simulations of the �ow of a viscid incompressible �uid
over a range of Reynolds numbers in this domain.

1.1.1. Flow Decomposition and Terminology

The total �ow can be considered as a composition of base �ow and perturbation. As we
assume parallel base �ow, it can be written as ~U = (U, 0), while the perturbations have
components in both dimensions, ~u = (u, v). The total �eld then is

U t = U + u (1.1)

V t = v (1.2)

P t = P + p (1.3)

Ωt
z = Ωz + ωz . (1.4)

Since parallel base �ow does not mean that the whole �ow must be parallel, any depar-
ture of the basic �ow from parallelism is also represented by the perturbation variables.
In di�erentiation to the parallel base �ow, a �ow including a possible perturbation from
non-parallelism (not from introduction of the external disturbance i. e. the body forcing,
cf. 2.3) shall be called mean �ow in this thesis. In summary:

5

1.1. Basic Flow Properties

x
0 1

0y

xTExTE xf0 xend

v, V

u, U

Figure 1.1. � The domain of the simulations including the �at plate.

�
~U � base �ow

� ~u � perturbation
�

~U + ~u|Af=0 � mean �ow

The de�nition of vorticity used here is

Ωz :=
∂U

∂y
− ∂V

∂x
(1.5)

ωz :=
∂u

∂y
− ∂v

∂x
. (1.6)

6

1.1. Basic Flow Properties

1.1.2. Non-dimensionalisation of Variables

In order to work with practical values and to get universally valid results that can be
rescaled to any given physical problem, we divide all dimensional variables (denoted by
an asterisk) by appropriate variables and thereby get non-dimensional variables (without
asterisk). All non-dimensionalisations hold for perturbation, base �ow and total �ow
variables.

Wall-normal coordinate

We use the Blasius variable to scale and non-dimensionalise the wall-normal coordinate:

η :=
y∗√
2x∗ν∗

U∗∞

. (1.7)

Lengths

Length variables are brought to a non-dimensional form by scaling them with a charac-
teristic length δ∗. In the case of the �at plate this length is the boundary layer thickness
(cf. 1.4), for the wake simulation it is the wake half-width (cf. 1.7).

x =
x∗

δ∗
(1.8)

y =
y∗

δ∗
(1.9)

` =
`∗

δ∗
(1.10)

Velocities and Pressure

Velocities are non-dimensionalised by scaling them with the undisturbed free-stream
velocity; the pressure is divided by twice the dynamic pressure:

u =
u∗

U∗∞
U =

U∗

U∗∞
U t =

U∗t

U∗∞
(1.11)

v =
v∗

U∗∞
V =

V ∗

U∗∞
V t =

V ∗t

U∗∞
(1.12)

p =
p∗

ρU∗∞
2

P =
P ∗

ρU∗∞
2

P t =
P ∗t

ρU∗∞
2

(1.13)

7

1.2. Governing Equations

Time and Frequency

A characteristic time derived from the variables already used is δ∗/U∗∞ and therefore:

t =
t∗U∗∞
δ∗

, (1.14)

T =
T ∗U∗∞
δ∗

. (1.15)

Using

ω∗ =
2π
T ∗

(1.16)

=
2πU∗∞
Tδ∗

(1.17)

and

ω =
2π
T
, (1.18)

we get for the non-dimensionalisation of the frequency

ω =
ω∗δ∗

U∗∞
. (1.19)

1.1.3. REYNOLDS Number

Unless denoted by a subscript giving the respective length, we use theReynolds Number
based on the boundary layer thickness throughout this thesis:

Re := Reδ∗ =
U∗∞δ

∗

ν∗
. (1.20)

For further relations involving the Reynolds Number cf. 1.5.

1.2. Governing Equations

1.2.1. NAVIER-STOKES Equations in Velocity-Vorticity Formulation

According to our premises of sec. 1.1, the appropriate basic equations for this two-
dimensional problem are the full Navier-Stokes equations for viscous incompressible
�ow: the momentum equation

∂~U∗t

∂t
+
(
~U∗t · ∇

)
~U∗t = − 1

ρ∗
∇P ∗t + ν∗∇2~U∗t , (1.21)

8

1.2. Governing Equations

and the continuity equation

∇ · ~U∗t = 0 , (1.22)

together with appropriate boundary conditions to close the system (cf. 1.3).

Division by U∗∞
2/δ∗ and application of the aforementioned non-dimensionalisations

leads to

∂~U t

∂t
+
(
~U t · ∇

)
~U t = −∇P t +

1
Re
∇2~U t (1.23)

and

∇ · ~U t = 0 . (1.24)

We will derive the governing equations for perturbations rather then for the total �ow
as having the perturbation values readily at hand is more convenient for the stability
analysis.

Davies and Carpenter (2001) gave an equivalent novel velocity-vorticity formulation of
the Navier-Stokes equations which entails several advantages compared to the classical
formulation in primitive variables. First advantage is the removal of the pressure and a
reduction in the number of variables and governing equations, which reduces demand of
computational resources.

The derivation of this formulation is as follows: The variables of the momentum equa-
tion are decomposed according to (1.1)�(1.3) and the x- and y-components of the mo-
mentum equation are derived with respect to y and x respectively, and then subtracted
from each other. Using the de�nition of vorticity (1.5) and continuity (1.24) as well as
the premise of a steady parallel basic �ow (i. e. V = Ut = Ux = 0) one gets eventually1

∂ωz

∂t
+ U

∂ωz

∂x
+ u

∂ωz

∂x
+ v

∂ωz

∂y
+ v

d2U

dy2
=

1
Re

(
∂2ωz

∂x2
+
∂2ωz

∂y2

)
. (1.25)

This vorticity transport equation is complemented by the continuity equation (con-
servation of mass for an incompressible �uid), combined, again, with the de�nition of
vorticity, which leads to the Poisson equation

∂2v

∂x2
+
∂2v

∂y2
= −∂ωz

∂x
. (1.26)

1 The term + 1
Re

d3U
dy3 in principle appearing on the right-hand side of the equation must be zero because

otherwise, even in the absence of any initial perturbation, it would produce a non-zero right-hand
side and thereby generate a non-parallel base �ow.

9

1.2. Governing Equations

We now have one di�erential equation (1.25) for the vorticity ωz and one equation
(1.26) to derive the velocity component v from that. The x-wise component u is obtained
by solving the integrated de�nition of vorticity which stems from (1.5)

u = −
∞∫

y

(
∂v

∂x
+ ωz

)
dy . (1.27)

This implies, for the vanishing integral
∫∞
∞ . . ., that the perturbation u vanishes at in�n-

ity:

u|∞ = 0 . (1.28)

When of interest, the pressure can be derived by integrating the ordinary y-momentum
equation:

p =

∞∫
y

(
∂v

∂t
+ (U + u)

∂v

∂x
+ v

∂v

∂y
− 1
Re
∇2v

)
dy . (1.29)

As u and p can be expressed in terms of the other variables and therefore be removed from
consideration entirely, they are called the �secondary� variables; ωz and v are referred to
as �primary� variables consequently.

It is worth noting that the parallel basic �ow ~U =
(
U(y), 0

)
was not subjected to the

Navier-Stokes equations in this derivation, therefore it does not have to be an exact
solution of these. The only constraint is

d3U

dy3
= 0 (1.30)

as mentioned in footnote 1. It can be shown that the e�ects of omitting that term are
much weaker (i. e. asymptotically smaller) than the e�ects that can be described in terms
of the triple deck structure in the near wake around the trailing edge and the associated
strongly non-parallel �ow, which will be discussed in chapter 4.

1.2.2. Equivalence with the NAVIER-STOKES Equations in Primitive
Variables Formulation

With some operations it can be shown conversely that (1.25) and (1.26) are equivalent to
the original form of the Navier-Stokes equations (1.23) and (1.24) � the principal idea
of this will be shown below because it provides some conditions that have to be ful�lled
in order to keep the equivalence.

The comprehension of the y-momentum equation is directly obvious because the pres-
sure was de�ned via this equation.

10

1.2. Governing Equations

Di�erentiating (1.27) with respect to x and substituting for ωz by means of (1.26)
yields (minding the rules for improper integrals)

∂u

∂x
+
∂v

∂y
=
∂v

∂y

∣∣∣∣∣
∞

, (1.31)

so for satisfying the continuity equation (1.24), it must be

∂v

∂y

∣∣∣∣∣
∞

= 0 . (1.32)

Deriving the conditions stemming from satisfying the x-momentum equation is slightly
more laborious. In order to do this we di�erentiate (1.29) with respect to x and cancel
out respective terms using the continuity equation (1.24), which gives

∂p

∂x
=

∞∫
y

 ∂

∂t

(
∂v

∂x

)
+ (U + u)

∂2v

∂x2
+ v

∂2v

∂x ∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)
∂v

∂x

 dy . (1.33a)

Now we use ∂v
∂x = ∂u

∂y − ωz from (1.5):

∂p

∂x
=

∞∫
y

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)(∂u
∂y

− ωz

)
dy . (1.33b)

When subtracting the vorticity transport equation (1.25) from this, the result is (with ′

denoting the total derivative d
dy)

∂p

∂x
=

∞∫
y

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

) ∂u

∂y
+ vU ′′

 dy . (1.33c)

We then apply the partial derivative ∂
∂y on the product of the term in the inner brackets

and u, rather than multiplying the term in the inner brackets with the partial derivative
of u. This requires equalising the terms arising from the product rule by subtracting
them subsequently:

∂p

∂x
=

∞∫
y

(
∂

∂y

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)u−

−
(
U ′ +

∂u

∂y

)
∂u

∂x
− ∂v

∂y

∂u

∂y
+ vU ′′

)
dy , (1.33d)

11

1.2. Governing Equations

where continuity equation, again, cancels some terms so that

∂p

∂x
=

∞∫
y

 ∂

∂y

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)u+ U ′
∂v

∂y
+ vU ′′

 dy .

(1.33e)

Now we can simply rearrange and evaluate the integral:

∂p

∂x
=

∞∫
y

∂

∂y

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)u+ vU ′

 dy (1.33f)

=

 ∂

∂t
+ (U + u)

∂

∂x
+ v

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

)u+ vU ′

∞

y

. (1.33g)

So, to be able to recover the x-momentum equation, which is the lower limit of the
de�nite integral above:

−∂p
∂x

=
∂u

∂t
+ (U + u)

∂u

∂x
+ v

∂u

∂y
+ vU ′ − 1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.34)

the upper limit of this integral must vanish. Since u|∞ = 0 (1.28), this amounts to
requiring that (

v

(
U ′ +

∂u

∂y

)
− 1
Re

∂2u

∂y2

)∣∣∣∣∣
∞

= 0 (1.35a)

or (
v

(
U ′ +

∂u

∂y

)
− 1
Re

∂

∂y

(
ωz +

∂v

∂x

))∣∣∣∣∣
∞

= 0 , (1.35b)

where (1.5) was used. This equation is satis�ed if

v|∞ = 0 (1.36)

and

∂ωz

∂y

∣∣∣∣∣
y→∞

= 0 . (1.37)

To sum it up, the velocity-vorticity formulation of the Navier-Stokes equation is
equivalent to the �classical� form in primitive variables if

lim
y→∞

v = lim
y→∞

∂v

∂y
= lim

y→∞

∂ωz

∂y
= 0 .

As to how these conditions can be applied in the numerical representation the discussion
will be held in 2.1.2.

12

1.3. Boundary Conditions and Symmetry

1.3. Boundary Conditions and Symmetry

Solving the di�erential equations (1.5) and (1.26) requires appropriate boundary condi-
tions. In order to specify them in a manner that allows for e�cient numerical calculations,
we use the concept of symmetric and antisymmetric decomposition of the �ow �eld.

1.3.1. Symmetric and Antisymmetric Decomposition

The two half-planes of the computational domain (̄· denotes upper half, · lower half) are
readily represented by a decomposition of all variables in the �eld into a symmetric (̌·)
and an antisymmetric (̂·) part according to

ā = ǎ+ â (1.38)

a = ǎ− â . (1.39)

Splitting the �eld into symmetric and antisymmetric parts also gives the advantage of
storing and manipulating the values in the numerical simulation easily, as it will be
discussed in 2.4.

The upper and lower half-plane can both be assigned an own coordinate system as

ȳ = y (1.40)

y = −y . (1.41)

which maps them onto two overlaid semi-in�nite domains with positive coordinate values.

Still, these half-planes match at y = ȳ = y = 0 and the condition of uniqueness
(i. e. one single value for one physical point) imposes a constraint at this line, and the
symmetric and antisymmetric part of every variable get di�erent parity from this:

ū|ȳ=0 = u|y=0 ⇒ ǔ|y=0 = 0 (1.42)

v̄|ȳ=0 = −v|y=0 ⇒ v̂|y=0 = 0 (1.43)

ω̄z|ȳ=0 = −ωz|y=0 ⇒ ω̂z|y=0 = 0 (1.44)

(This can be derived formally by using the de�nition of vorticity (1.5) and the results
for u and v above.)

p̄|ȳ=0 = p|y=0 ⇒ p̌|y=0 = 0 (1.45)

∂ū

∂x

∣∣∣∣∣
ȳ=0

=
∂u

∂x

∣∣∣∣∣
y=0

⇒ ∂ǔ

∂x

∣∣∣∣∣
y=0

= 0 (1.46)

∂v̄

∂x

∣∣∣∣∣
ȳ=0

= − ∂v

∂x

∣∣∣∣∣
y=0

⇒ ∂v̂

∂x

∣∣∣∣∣
y=0

= 0 (1.47)

13

1.3. Boundary Conditions and Symmetry

∂ω̄z

∂x

∣∣∣∣∣
ȳ=0

= − ∂ωz

∂x

∣∣∣∣∣
y=0

⇒ ∂ω̂z

∂x

∣∣∣∣∣
y=0

= 0 (1.48)

∂p̄

∂x

∣∣∣∣∣
ȳ=0

=
∂p

∂x

∣∣∣∣∣
y=0

⇒ ∂p̌

∂x

∣∣∣∣∣
y=0

= 0 (1.49)

∂ū

∂y

∣∣∣∣∣
ȳ=0

= − ∂u

∂y

∣∣∣∣∣
y=0

⇒ ∂û

∂y

∣∣∣∣∣
y=0

= 0 (1.50)

∂v̄

∂y

∣∣∣∣∣
ȳ=0

=
∂v

∂y

∣∣∣∣∣
y=0

⇒ ∂v̌

∂y

∣∣∣∣∣
y=0

= 0 (1.51)

∂ω̄z

∂y

∣∣∣∣∣
ȳ=0

=
∂ωz

∂y

∣∣∣∣∣
y=0

⇒ ∂ω̌z

∂y

∣∣∣∣∣
y=0

= 0 (1.52)

∂p̄

∂y

∣∣∣∣∣
ȳ=0

=
∂p

∂y

∣∣∣∣∣
y=0

⇒ ∂p̌

∂y

∣∣∣∣∣
y=0

= 0 (1.53)

...

These basic results, of course, may not be imposed on the �ow �eld simultaneously
but they can be employed to give two boundary conditions for the two primary variables
� as will be shown below.

The property that the product of an arbitrary symmetric variable and an arbitrary
antisymmetric variable is antisymmetric, the product of any two symmetric variables is
symmetric and the product of any two antisymmetric variables also is symmetric:

â b̌ = ď , (1.54a)

â b̂ = d̂ and (1.54b)

ǎ b̌ = d̂ . (1.54c)

will be used in the following.

1.3.2. Derivation of the Boundary Conditions

On the Rigid Wall

The no-slip boundary condition at a rigid wall, i. e. over the �at plate, is U t(y = 0) = 0
and V t(y = 0) = 0. With a base �ow that is subjected to viscous adhesion (U(y = 0) = 0
and V (y = 0) = 0) � insofar now imposing a condition on the base �ow � this also results

14

1.3. Boundary Conditions and Symmetry

in

u|y=0 = 0 ⇒ û|y=0 = 0 ∧ ǔ|y=0 = 0 (1.55)

v|y=0 = 0 ⇒ v̂|y=0 = 0 ∧ v̌|y=0 = 0 . (1.56)

As we operate with the primary variables, the condition for u has to be translated
into a condition involving ωz, which we get when we substitute the results of (1.55) into
(1.27):

∞∫
0

(
ω̂z +

∂v̂

∂x

)
dy = 0 ∧

∞∫
0

(
ω̌z +

∂v̌

∂x

)
dy = 0 . (1.57)

On the Wake Centreline

As there is no no-slip condition in the wake, we need di�erent boundary conditions there.
Firstly we can derive a condition for the symmetric parts as the condition of uniqueness
holds for the total �ow � here we use the total vorticity in particular � as well:

Ω̄z|ȳ=0 = −Ωz|y=0 ⇒ Ω̂z|y=0 = 0 (1.58a)(
ω̂z +

∂Û

∂y
− ∂V̂

∂x︸︷︷︸
=0

)∣∣∣∣∣
y=0

= 0 (1.58b)

and therefore (
ω̂z +

dÛ
dy

)∣∣∣∣∣
y=0

= 0 . (1.58c)

For the antisymmetric set we employ a condition on the pressure as we substitute
p̌|y=0 = 0 (1.45) into (1.29). Respecting (1.54a) the antisymmetric part of this pressure
equation for y = 0 gives

0 =

∞∫
0

(
∂v̌

∂t
+
(
Û + û

) ∂v̌
∂x

+ ǔ
∂v̂

∂x
+ v̂

∂v̌

∂y
+ v̌

∂v̂

∂y
+

1
Re

∂ω̌z

∂x

)
dy . (1.59)

We made use of the assumption that the base �ow U was symmetric, hence Ǔ = 0, and
replaced the last term as −∇2v = ∂ωz

∂x , as the Poisson equation states. The product
rule allows to separately integrate two terms:

∞∫
0

(
v̂
∂v̌

∂y
+ v̌

∂v̂

∂y

)
dy = [v̂v̌]∞0 (1.60)

= 0 , (1.61)

15

1.3. Boundary Conditions and Symmetry

since v̂|∞ = v̌|∞ = 0 (1.36) and v̂|y=0 = 0 (1.43). Subsequently, our condition on the
wake �ow, derived from the pressure condition �nally is

0 =

∞∫
0

(
∂v̌

∂t
+
(
Û + û

) ∂v̌
∂x

+ ǔ
∂v̂

∂x
+

1
Re

∂ω̌z

∂x

)
dy . (1.62)

The interesting point is that this condition is linear in the antisymmetric part of the �eld
{ǔ, v̌, ω̌z}.

Alternative Antisymmetric Boundary Condition An alternative boundary condition
for the antisymmetric part can be found using ∂v̌

∂y |y=0 = 0 and ∂ω̌z
∂y |y=0 = 0. Taking into

account (1.54a)�(1.54c) and assuming that the conditions for the validity of (1.34) hold,
we get from (1.34):

∂p̌

∂x
=

 ∂

∂t
+
(
Û + û

) ∂

∂x
+ v̂

∂

∂y
− 1
Re

(
∂2

∂x2
+

∂2

∂y2

) ǔ+ ǔ
∂û

∂x
+ v̌

∂û

∂y
+ v̌Û ′ .

(1.63)

Using the implication from continuity ∂v̌
∂y |y=0 = 0 ⇒ ∂ǔ

∂x |y=0 = 0 this leads to

∂p̌

∂x

∣∣∣∣∣
y=0

=

(
∂ǔ

∂t
− 1
Re

∂2ǔ

∂y2
+ ǔ

∂û

∂x

)∣∣∣∣∣
y=0

, (1.64)

where replacing (
v̌
∂û

∂y
+ v̌Û ′

)∣∣∣∣∣
y=0

=

(
v̌

(
∂û

∂y
+ Û ′

))∣∣∣∣∣
y=0

= 0 , (1.65)

because of (1.58c) and (1.43).

Using (1.51) and (1.27), this equals to

∂p̌

∂x

∣∣∣∣∣
y=0

=
(
∂ǔ

∂t
− 1
Re

∂ω̌z

∂y
+ ǔ

∂û

∂x

)∣∣∣∣∣
y=0

. (1.66)

So with ǔ|y=0 = 0 and ∂ω̌z
∂y = 0|y=0 = 0 we would eventually get

∂p̌

∂x

∣∣∣∣∣
y=0

= 0 , (1.67)

16

1.4. Boundary Layer Thickness

but ∂v̌
∂y |y=0 = ∂ω̌z

∂y |y=0 = 0 only speci�es

∂p̌

∂x

∣∣∣∣∣
y=0

=
(
∂ǔ

∂t
+ ǔ

∂û

∂x

)∣∣∣∣∣
y=0

, (1.68)

as ∂v̌
∂y |y=0 = 0 only delivers ǔ|y=0 = const. This means that we could end up with a

varying ∂p̌
∂x (contrary to 1.45) if ǔ|y=0 = 0 is not satisi�ed.

1.4. Boundary Layer Thickness

From conservation of mass (equation of continuity) it follows

U∗∞δ
∗ =

∞∫
0

(
U∗∞ − U∗

)
dy∗ (1.69)

and subsequently

δ∗ =

∞∫
0

(
1− U∗

U∗∞

)
dy∗ =

∞∫
0

(1− U) dy∗ , (1.70)

the displacement thickness, which is a function of x∗.

In analogy to the de�nition of the Blasius variable we can say

δ[η] =
δ∗√
2x∗ν
U∗∞

(1.71)

and with

dy∗

dη
=

√
U∗∞
2x∗ν

(1.72)

we get

δ∗ =

∞∫
0

(1− U)

√
2x∗ν
U∗∞

dη (1.73)

and

δ[η] =

∞∫
0

(1− U) dη , (1.74)

17

1.5. Reynolds Number Relations

the dimensionless displacement thickness in η-coordinates (while δ[y] ≡ 1, the displace-
ment thickness in �classical� y-coordinates is equal to 1 because of the non-dimensionalisation
chosen).

Introducing the streamfunction

Ψ :=
√

2x∗νU∗∞f(η) (1.75)

with f being a function that satis�es the Blasius formulation of boundary layer equa-
tions ff ′′+f ′′′ = 0 subject to the boundary conditions f(0) = f ′(0) = 0 and limη→∞ f ′(η) =
1 we get, using

U∗ =
∂Ψ

∂y
= U∗∞f

′(η) , (1.76)

U = f ′(η) . (1.77)

Thus we can write

δ[η] =

∞∫
0

(
1− f ′

)
dη , (1.78)

and integrating this, we get

δ[η] = lim
η→∞

(
η − f(η)

)
≈ 1.21678 , (1.79)

which is independent of x∗.

Therefore

δ∗(x∗) ≈ 1.72079

√
x∗ν

U∗∞
(1.80)

and

η ≈ 1.21678y . (1.81)

1.5. REYNOLDS Number Relations

Rex∗(x∗) =
U∗∞x

∗

ν
(1.82)

Reδ∗(x∗) =
U∗∞δ

∗(x∗)
ν

=
U∗∞δ[η]

ν

√
2x∗ν
U∗∞

(1.83)

=
√

2 δ[η]

√
Rex∗ (1.84)

18

1.6. Base Flow Calculation

Since we assume parallelism of the �ow, the boundary layer thickness is to be considered
constant over the whole �ow and the Reynolds Number prescribed gives implicitly a
distance between the point of consideration and the leading edge of the plate:

Rex∗(x∗) =
U∗∞x

∗

ν
(1.85)

Reδ∗(x∗) =
U∗∞δ

∗(x∗)
ν

=
U∗∞δ[η]

ν

√
2x∗ν
U∗∞

(1.86)

=
√

2 δ[η]

√
Rex∗ . (1.87)

1.6. Base Flow Calculation

In this study the base �ow, as noted, can be of any type � provided it is parallel � and
thus provisions are made for examining the stability behaviour of di�erent basic �ow
types. To state it clearly, not the whole �ow itself must be parallel but only the base
�ow; any non-parallel part can be coped with by the code via the perturbation variables
(as this is the case for the trailing edge �ow) � the result is the mean �ow, cf. 1.1.1. The
base �ow can either be calculated in a previous step or speci�ed explicitly.

The code used here provides a module that independently computes the base �ow for
the �at plate by solving the Blasius equations, which is the solution to Prandtl's
boundary layer equations with no streamwise pressure gradient. Fig. 1.2 (p. 21) gives
the velocity pro�le over the �at plate produced by the PCNAVWAKEBD code. Likewise using
the same interface to the main code, a new module, PRESCMF, was written that allowed
to use any �ow de�ned by an analytical function as the basic state.

1.7. Wake Flow and Prescribed Mean Flow

The altered boundary condition at the trailing edge of the plate (if it is within the domain)
introduces a non-vanishing vorticity to the vorticity transport equation for positions
downstream of the trailing edge and thereby provokes a �perturbation� �ow. When
adding this to the base �ow, one gets the mean �ow which equals the total �ow in the
wake of the plate, as it is depicted also in Fig. 1.2 (p. 21).

Alternatively to this, the PRESCMF wake�ow module (cf. 2.6) allows to remove the plate
completely and have the whole computational domain represent the wake where the basic
�ow is chosen freely. This shall be called the prescribed mean �ow further on (in our
terminology it could also be called a prescribed base �ow but obviously it will not be
combined with a trailing edge).

Several analytic representations of the wake �ow are discussed in the literature, like the

19

1.8. Stability of Fluid Flow

function U(y) = 1 −Q

(
1 + sinh2p

(
y sinh−1(1)

))−1

proposed by Monkewitz (1988) or

U(y) = 1−Q sech2(y) as used e. g. by Criminale, Jackson, and Joslin (2003). The pro�le
parameter p determines the shape of the velocity pro�le and the velocity ratio Q the ratio
between U∗∞ and U(y = 0). The latter pro�le could be considered a �standard� form and
as both di�er relatively little, we will concentrate on the sech2 shaped representation for
this thesis. Fig. 1.2 (p. 21) also shows its velocity pro�le. Its stability characteristics
are discussed in 5.5.

The wake half-width, which is the y-coordinate where U(δ∗) = 1
2

(
U∗∞ + U(0)

)
is the

non-dimensionalisation parameter δ∗ for the variables, replacing the displacement thick-
ness.

1.8. Stability of Fluid Flow

Stability of a dynamical system can be de�ned generally as the �ability of a dynamical
system to be immune to small disturbances� (Criminale et al., 2003). More concrete,
in the �eld of hydrodynamics it is the response of a laminar �ow to a disturbance of
small amplitude and there is the distinction: �if the �ow returns to its original laminar
state one de�nes the �ow as stable, whereas if the disturbance grows and causes the
laminar �ow to change into a di�erent state, one de�nes the �ow as unstable� (Schmid
& Henningson, 2001).

1.8.1. Modal Expansion

The classical approach to stability analysis of a �ow is to make a Fourier analysis of
the disturbances, therefore to suppose the existence of harmonic partial oscillations, the
normal modes, with the streamfunctions

ψn(x, y, t) = φn(y) ei(αnx−ωnt) ∈ C , (1.88)

which form a spectrum of modes and add together to the full disturbance via a Fourier
integral.

Variables of a wave used here are the phase velocity c, the wavenumber α, and the
frequency ω, that are associated with each other and with the wavelength λ via the
relations

c =
ω

α
(1.89)

and

α =
2π
λ
. (1.90)

20

1.8. Stability of Fluid Flow

y
0.0 0.2 0.4 0.6 0.8 1.0

-5

-4

-3

-2

-1

0

1

2

3

4

5

x=100
x=200
x=220
x=250
x=300
1-0.6 sech2(y)
1-0.75 sech2(y)

U

Figure 1.2. � u-velocity pro�les at various x-stations as resulting from simulation at Re =
1000 and with a trailing edge position of xTE = 200, and as obtained with prescribed analytic

mean �ow.

Furthermore, all these variables are complex

c = cr + ici (1.91)

α = αr + iαi (1.92)

ω = ωr + iωi . (1.93)

The complex eigenfunction φn(y) characterises the distribution of �uctuations in the
y-direction. For spatial stability analysis (cf. 1.8.3) with ωi = 0 we can derive

cr =
αrωr

α2
r + α2

i

(1.94)

21

1.8. Stability of Fluid Flow

ci = − αiωr

α2
r + α2

i

, (1.95)

and for the temporal stability problem (αi = 0)

cr =
αiωi

α2
r + α2

i

(1.96)

ci =
αrωi

α2
r + α2

i

. (1.97)

It should be noticed that there is a di�erence to the de�nition of the entirely real phase
velocity

cph =
ωr

αr
. (1.98)

1.8.2. Stability Analysis

When stating the existence of a streamfunction in this incompressible two-dimensional
�ow, applying its de�nition on (1.88) yields the complex forms (the subscript n is dropped
for convenience):

uc =
∂ψ

∂y
= φ′ ei(αx−ωt) (1.99)

vc = −∂ψ
∂x

= −iαφ ei(αx−ωt) (1.100)

ωz c =
∂uc

∂y
− ∂vc

∂x
= −

(
∂2

∂x2
+

∂2

∂y2

)
ψ (1.101)

= −
(
φ′′ − α2φ

)
ei(αx−ωt) . (1.102)

When seeking for an answer to whether a given disturbance exerts a destabilising e�ect
on a �uid �ow of given Reynolds number, the idea of the concept of normal mode
disturbance forms becomes clear by solely considering the real, physically meaningful
part of the perturbations as written above:

u = Re{uc} = φ′ e−(αix−ωit) cos(αrx− ωrt) (1.103)

v = Re{vc} = −αφ e−(αix−ωit) sin(αrx− ωrt) (1.104)

ωz = Re{ωz c} = −
(
φ′′ − α2φ

)
e−(αix−ωit) cos(αrx− ωrt) (1.105)

It is evident that in any case where the disturbance exhibits an imaginary wave number
αi < 0 and / or an imaginary frequency ωi > 0, the disturbance grows exponentially and
inevitably leads to unbounded amplitudes of velocity and vorticity.

One approach to hydrodynamic stability analysis thus is to search for the neutral wave
number αi = 0, respectively the neutral imaginary frequency ωi = 0, which constitute

22

1.8. Stability of Fluid Flow

the boundary between stable and unstable disturbances for a �ow of given parameters.

One way to do this is to substitute the oscillation form of the disturbances (1.99)�
(1.101) into the Navier-Stokes equations (1.23). With neglecting the nonlinear terms
(products of small quantities) and eliminating the pressure this gives

(U − c)
(
φ′′ − α2

)
− U ′′φ = − i

αRe

(
φ′′′′ − 2α2φ′′ + α4φ

)
, (1.106)

theOrr-Sommerfeld equation, the fundamental di�erential equation to hydrodynamic
stability analysis. Boundary conditions for a symmetric free �ow as the wake are

φ′(y = 0) = φ′′′(y = 0) = 0 or φ(y = 0) = φ′′(y = 0) = 0 (1.107)

and

lim
y→∞

φ(y) = lim
y→∞

φ′(y) = 0 . (1.108)

The solution of the Orr-Sommerfeld equation, which is the governing equation for
every normal mode, is an eigenvalue problem, providing an eigenfunction φ for each
complex pair of α and ω for a given Re (ω replaces, together with the initially unknown
α, c according to (1.89)).

1.8.3. Spatial and Temporal Stability

Two principal points of view can be taken when examining the stability properties of a
�uid �ow: (a) prescribing an initial streamwise homogeneous perturbation of wavenumber
α with αi = 0 and inspecting the development of the response in time for any point, or
(b) prescribing a temporally constant disturbance of frequency ω with ωi = 0 in a �xed
location and considering the evolution of the disturbance travelling downstream from this
location. These cases correspond to temporal and spatial stability analysis respectively.

Historically, stability analysis focused mostly on temporal stability as the analytical
approach to this case is notably less complicated. Yet what is observed physically in
experiment conducted with �uid �ow is mostly spatial stability or rather instability.
This equally holds for experiments conducted in the synthetic environment of a numerical
simulation and thus the temporal stability analysis originally was the primary concern
in this thesis.

23

2. Numerical Approach

In the following sections, the numerical approach and the solution scheme of the PCNAV-

WAKEBD code � for the case it is used for the simulation of the �ow � are brie�y reviewed.

Furthermore, changes and extensions to this code as well as separate programmes written

for post-processing the data obtained from running PCNAVWAKEBD are presented.

2.1. Discretisation

2.1.1. Streamwise Discretisation and Timestepping

In order to run the numerical simulation, a constant discretisation of the time as ∆t is
applied. The streamwise direction also is discretised equidistantly with a step width of
∆x.

2.1.2. Wall-Normal Discretisation

Coordinate Mapping

In the wall-normal direction y a coordinate mapping

ζ =
l

l + y
, (2.1)

involving the free stretching parameter l and mapping the range [0,∞) on (0, 1] is applied.
This mapping gives both the advantage of a non-equidistant grid with highest resolution
near the wall / centreline, where gradients are highest, and provides a pseudo-in�nite
domain with the outmost grid point arbitrarily far out. This is particularly interesting
because the upper deck �ow (cf. chapter 4) shall be resolved and this structure lies in
the potential �ow region well above the boundary layer. Moreover, the grid points are
spaced via a cos function

ϑj = π
j − 1
2Ny

(2.2)

ζ = cosϑ , (2.3)

24

2.1. Discretisation

so that in result

yj =
l

cos
(
π j−1

2Ny

) − l . (2.4)

Another advantage of the coordinate mapping lies within in the behaviour of the wall-
normal derivative of this mapped coordinate:

∂f

∂y
=
∂f

∂ζ

∂ζ

∂y
(2.5a)

= −∂f
∂ζ

l

(l + y)2
(2.5b)

= −∂f
∂ζ

ζ2

l
, (2.5c)

and as ζ → 0 when y →∞, this assures

lim
y→∞

{
−∂f
∂ζ

ζ2

l

}
= 0 (2.6)

in the mapped domain, as long as limy→∞ f is bounded in the physical domain. This
ensures the global satisfaction of (1.38).

CHEBYSHEV Representation

The discretisation of the wall-normal coordinate is achieved via odd (primary variables) or
even (secondary variable) Chebyshev polynomials representing the values at discrete
points. The use of only the odd or even terms respectively is because only half the
Chebyshev interval is �used� by the semi-in�nite physical domain. The discretisation
reads like

v(x, y, t) =
Ny∑

m=1

vm(x, t)T2m−1(ζ) (2.7)

ωz(x, y, t) =
Ny∑

m=1

ωz m(x, t)T2m−1(ζ) (2.8)

u(x, y, t) =
Ny∑

m=1

um(x, t)(T2m(ζ)− T2m(0)) , (2.9)

where the last term, derived from the zeroth-order coe�cient, is there to ensure that u
vanishes for y →∞

25

2.2. Solution Scheme of the PCNAVWAKEBD Code

Ny is the truncation length of the series and thus the order of the Chebyshev poly-
nomial.

When substituting the Chebyshev expansions into the de�nition for the secondary
variable (1.27), a relationship between the coe�cients of the primary and the secondary
variables is obtained and thus for determining u it is not necessary any longer to go via
the physical values.

2.2. Solution Scheme of the PCNAVWAKEBD Code

For the numerical solution of the vorticity transport equation (1.25), it is split into the
time and second order y-derivative of the vorticity on the one hand and an accumulative
quantity for the rest on the other hand.

∂ωz

∂t
− 1
Re

∂2ωz

∂y2
= N , (2.10)

where

N = − (U + u)
∂ωz

∂x
− v

(
∂ωz

∂y
+

d2U

dy2

)
+

1
Re

∂2ωz

∂x2
+
∂fb

∂x
(2.11)

In the time loop over the index l from t = 0 to t = l∆t, a predictor-corrector scheme
in time is employed for the left hand side of (2.10) and the right hand side N is treated
explicitly with a backward di�erence scheme. The inclusion of the x-di�usion term in
the explicitly solved part is due to higher robustness of this method without the price
of high computational demand as it would be the case for the y-di�usion term because
the latter is discretised in a Chebyshev series; refer to Davies and Carpenter (2001) for
further details.

2.2.1. Predictor Step

For the predictor step, a three-point second order backward di�erence scheme for the
time derivative is used (

∂ωz

∂t

)l

=
1

2∆t

(
3ω̃l

z − 4ωl−1
z + ωl−2

z

)
(2.12)

and this, together with the explicit approximation terms for N , turns (2.10) into(
3

2∆t
− 1
Re

∂2

∂y2

)
ω̃l

z = 2N l−1 −N l−2 +
1

2∆t

(
4ωl−1

z − ωl−2
z

)
, (2.13)

26

2.2. Solution Scheme of the PCNAVWAKEBD Code

a second order ODE to be solved in a spatial loop for every x-wise point k subject either
to the symmetry condition ω̃l

z|y=0 = −U ′|y=0 (1.58c) or to the no-slip condition (1.57),
which itself is approximated using a backward di�erence scheme:

∞∫
0

ω̃l
z dy = − ∂

∂x

∞∫
0

2vl−1 − vl−2 dy . (2.14)

To this we reapply the no-slip condition in terms of previous values
∫∞
0 ω̃l−n

z dy =
− ∂

∂x

∫∞
0 vl−n dy and get

∞∫
0

ω̃l
z dy =

∞∫
0

2ωl−1
z − ωl−2

z dy . (2.15)

2.2.2. Solution of the POISSON Equation

The predictor value is used to solve the Poisson equation (1.26)

∂2vl

∂x2
+
∂2vl

∂y2
= −∂ω̃

l
z

∂x
, (2.16)

and a second order central second di�erence scheme approximates the second derivative
in space

vk+1 − 2vk + vk−1

(∆x)2
+
∂2vl

∂y2
= −∂ω̃

l
z

∂x
. (2.17)

For the solution of this equation, two di�erent approaches can be envisaged, either an
iterative scheme or a direct solution involving a sin transform.

Iterative Scheme

The iteration in (2.17) over i is performed with an �inner� spatial loop over k, therefore
using the unknown value of v on the downstream position k+1 from the previous iteration
step:

∂2v̆l,i
k

∂y2
−

2v̆l,i
k

(∆x)2
= −

vl,i−1
k+1 + vl,i

k−1

(∆x)2
−
∂ω̃l

z k

∂x
. (2.18)

The result v̆l,i
k may be used for the next iteration and marching step (vl,i

k = v̆l,i
k), but

alternatively, an extrapolation using the previous value

vl,i
k = vl,i−1

k + %
(
v̆l,i
k − vl,i−1

k

)
(2.19)

27

2.2. Solution Scheme of the PCNAVWAKEBD Code

can be applied to get an improved value for subsequent calculation steps. Typically,
useful values for % lie between 0.5 and 1.5, where % < 1 is called under-relaxation and
% > 1 over-relaxation.

The in�uence of the number of iterations per timestep Nit will be discussed in 3.1.4.

Direct Solution

Alternatively to the iteration procedure, a direct solution of equation (2.17) can be
achieved via a sin transformation that is de�ned as

v̄n := F{vn} =
Nx−1∑
k=1

vk sin
(
knπ

Nx

)
. (2.20)

For the inclusion of the boundary points k = 0 and k = Nx − 1 (whose contributions
to the sum above vanish) particular provisions have to be made, details on that can be
found in Heaney (2007).

The transform of the complete discretisation term then readily reduces, by use of
periodicity and sum formulae, to a multiple of the centre value

F

{
vk+1 − 2vk + vk−1

(∆x)2

}
= βnF{vk} , (2.21)

which turns the Poisson equation into a second order ODE in terms of the transformed
variable:

∂2

∂y2
v̄n + βnv̄n = F

{
−
∂ω̃l

z k

∂x

}
. (2.22)

After solution for v̄n, an inverse transform gives vk.

Without further precautions � which have not been considered � this direct solution
cannot be applied to the case of a �ow that comprises at the same time a �nite �at
plate and a trailing edge plus wake �ow because the series form directly involves every
streamwise point and requires homogenous boundary conditions over the whole domain.

2.2.3. Corrector Step

The corrector step for ωl
z, again looped over k, is then accomplished by using the values

of ω̃l
z and vl obtained in the preceding steps

1
2∆t

(
3ωl

z − 4ωl−1
z + ωl−2

z

)
− 1
Re

∂2ωl
z

∂y2
= N l

∣∣∣
ω̃l

z ,vl
, (2.23)

28

2.3. Introduction of Disturbances

which then can be solved subject to

∞∫
0

ωl
z dy = − ∂

∂x

∞∫
0

vl dy (2.24)

or

ωl
z|y=0 = −U ′|y=0 (2.25)

respectively.

2.3. Introduction of Disturbances

The introduction of disturbances is done by a body force exerted on the antisymmetric
part of the �ow in the y-direction. While the PCNAVWAKE code in principle allows for
any type of disturbances, it is chosen to be periodic in this work. As an abrupt rise
in disturbance amplitude would introduce a wide range of frequencies (the Fourier
series representation of a rectangular signal having an in�nite number of terms), the
disturbance is �faded� in and out over time and space. Time-wise the forcing ramps up
with

rt(t) = 1− e−
1
2
ωt , (2.26)

and over streamwise space it is multiplied by

rx(x) =
x− xf

lxf
e
−(

x−xf
lxf

)2

, (2.27)

resulting in aGaussian curve shaped distribution over x, centred around xf . The scaling
factor lxf is introduced to adapt the width of this bell curve to be able to remove possible
spurious e�ects.

The wall normal distribution is chosen such that the integral of the forcing over y
vanishes for every x and, for the simulations carried out here, the forcing position was
left symmetrically on the centreline:

ry(y) = 2

1− 2

(
y

lyf

)2
 e

−(y
lyf

)2

. (2.28)

The forcing amplitude has the dimension of a force per unit mass ([N
kg] = [m

s2
]) and is

non-dimensionalised according to

Af =
A∗fδ

∗

U∗∞
2
. (2.29)

29

2.4. Symmetric and Antisymmetric Decomposition

In sum, the forcing is

fb(x, y, t) = Af rx(x) ry(y) rt(t) sin(ωt) . (2.30)

The body force fb would be simply added to the right hand side of the y-momentum
equation. For the velocity-vorticity form employed here, the curl of this forcing is taken
und this results in adding ∂fb

∂x as an antisymmetric part to (1.25).

2.4. Symmetric and Antisymmetric Decomposition

The symmetric and antisymmetric components are conveniently stored as the real and
imaginary part of complex variables. The advantage is that the whole domain is repre-
sented by one semi-in�nite domain carrying two sets of variables for each point. Addi-
tions can then be made straightforwardly, multiplications have to be done separately for
real and imaginary part, and we have two separate and independent sets of boundary
conditions as discussed in 1.3.

2.5. Inflow and Outflow Conditions

Apart from the boundary conditions for y = 0 and y → ∞, stemming directly from
the physical boundaries of the �ow and having been discussed above, the fact that the
numerical simulation takes place within a domain bounded also in x-direction necessitates
boundary conditions at x = 0 and x = xend.

The velocity-vorticity formulation of the Navier-Stokes equation does not require
any special condition for the upstream boundary and the perturbations under consider-
ation are expected to only weakly propagate upstream, thus the in�ow condition simply
is u(x = 0) = v(x = 0) = ωz(x = 0) = 0.

The downstream side is more delicate because the arti�cial value speci�ed here can
be convected upstream and cause spurious phenomena, e. g. upstream re�ection of the
disturbances travelling downstream at the ��xed end� of the domain. For the out�ow
condition there are several alternatives, three of which are implemented in the code and
could be used (for further details on these conditions see Kloker, Konzelmann, and Fasel
(1993) and Fasel, Rist, and Konzelmann (1990)):

� Second order oscillatory out�ow condition

The perturbations arriving at the downstream boundary can be expected to be of
oscillatory form (v, ωz ∝ eiαx) as the disturbances introduced are oscillating � at
least as long as the disturbance frequency is not too high above the frequency for
the most unstable mode. Therefore, a second order wave condition, obtained by

30

2.6. PRESCMF Wake�ow Module

deriving that form two times with respect to x, lets the disturbance waves �ow out
without them being re�ected:

∂2v

∂x2
= −α2v (2.31)

∂2ωz

∂x2
= −α2ωz . (2.32)

� First order wave equation

Alternatively, a complete �rst order wave equation

∂v

∂t
+ U

∂v

∂x
= 0 (2.33)

can likewise provide a convecting downstream boundary.

� Bu�er domain

Another possibility to avoid arti�cial distortions caused by the out�ow is to �smooth
out� the variables over a �nite bu�er domain of a certain length. Within this bu�er
between x = xend − lB and x = xend the value of ωz is replaced at the end of each
time step as

ωz 7→ m(x)ωz (2.34)

with

m(x) =
1
2

(
1− tanh

(
sinh(e

x− xend

lB
+ g)

))
∈ [0, 1] , (2.35)

ramping down from ωz to 0. e and g are parameters to adjust the distribution of m.
Values of 8 and 4 respectively, together with lB = 80, showed to give a reasonable
transition with the signi�cant decrease over a centred half of the bu�er length and
margin to both bu�er boundaries, see Fig. 2.1 (p. 32).

2.6. PRESCMF Wakeflow Module

A module complementing the PCNAVWAKE code was written to allow for prescribing arbi-
trary analytic wake �ow pro�les. Any kind of function giving the y-distribution of U , the
x-velocity component, can be speci�ed. The velocity is set to have no x-wise variation
and, consistently with the global setup, parallel �ow is assumed (V = 0).

The code of this module can be found in A.1.

The PRESCMF wake�ow module is docked on the main code via the latter's interface
originally created for retrieving the Blasius boundary layer base �ow. Variables handed

31

2.7. Other Extensions and Changes to the PCNAVWAKE Programme Code

x
520 540 560 580 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e=8, g=4
e=4, g=2

m

Figure 2.1. � Distribution of the bu�er function m(x) for two sets of adjusting parameters
at lB = 80 and xend = 600.

over to the subroutine were the mapping constant l∗, the number of y-wise points Ny

and the pro�le parameter p, as well as the velocity ratio Q. The data returned by the
module are U , d2U

dy2 ,
dU
dy |y=0 and l (therefore implicitly δ∗ because l = l∗

δ∗).

The module code had to be written, tested and the problem-free integration and inter-
action with the main code had to be veri�ed.

2.7. Other Extensions and Changes to the PCNAVWAKE

Programme Code

A wide number of changes and amendments were applied to the PCNAVWAKE code to
optimise and adapt its behaviour at input and output and the platform compatibility.
All changes were written, tested and veri�ed for problem-free integration and interaction
with the main code.

In detail, the following work was achieved:

� The whole data output interface was rewritten to have a more structured set of
output �les and a clearer data arrangement in these �les at hand. The original
subroutines outputdata and timehist are replaced by the newly written subrou-
tines outputall and outputcent. Module outputall writes the values for the
symmetric and asymmetric part of the �eld to the �le sym-asym.dat and for the

32

2.7. Other Extensions and Changes to the PCNAVWAKE Programme Code

total values to the �le total.dat. Variables written to sym-asym.dat are (in that
order) x, 1− ζ, y, û, v̂, ω̂z, ǔ, v̌, ω̌z, ûpert, v̂pert, ω̂z pert, ǔpert, v̌pert, ω̌z pert, p̂, p̌ and
to total.dat x, 1− ζ, y, u, v, ωz, upert, vpert, ωz pert, U t, d2Ut

dy2 , p. ·pert means the
di�erence to the base �ow:

apert = a−A . (2.36)

The printout of snapshots of the �ow for subsequent points in time was added with
the subroutine outputcent. It writes the values of x, |u|, |v|, |ωz|, u, v, ωz on the
centreline (y = 0) to �les called centvtnnnn.dat with nnnn the current time t,
when needed preceded by zeros to �ll up four digits. An adapted command calls
this module at every integer time step. Together with an appropriate visualisation
tool (e. g. the respective command of Tecplot), animations could be generated to
illustrate the development of the �ow in a short �lm sequence.

The code of the new output module is listed in A.3.1.

� It was considered useful to also allow for the visualisation of the data with the
programme Tecplot in addition to the gnuplot compatibility foreseen by the orig-
inal PCNAVWAKE code, therefore the output data format and all �le headers were
adapted such that they can be used for either one of these programmes. Via the
new start-up parameter TP, which is 1 for Tecplot compatible output format and
0 for gnuplot compatibility, the desired format can be chosen before running the
simulations. The routine that reads in the start-up parameters from input.dat

was amended accordingly. All output routines, also the ones obsolete when using
the new output interface mentioned above, were rewritten to read this parameter
and to format and write data either in Tecplot or gnuplot format.

� All occurrences of the print*,. . . commands were replaced by write(. . . ,*) '. . . '
because piping of screen output to a �le speci�ed on the command line at pro-
gramme call is not allowed on the Condor cluster used for running the simulations
(cf. 3.2).

� The data input interface was completely rearranged to make it more structured, in-
tegrate the above change towards write commands and make the status messaging
more handy. A �le called outputparam.dat is created by the code, where all used
input parameters are summed up and printed. Furthermore the need to specify
the input �le input.dat explicitly at programme start from the command line was
superseded by an automatic integration. The subroutines flowparams, miscdata
and otherdata were replaced altogether by a single subroutine startupparams for
which the code is given in A.3.2.

33

2.8. Post-processing Programmes

2.8. Post-processing Programmes

Several smaller programmes were written to post-process the data obtained from simula-
tions for further analysis and visualisation. The two most important ones are:

� For achieving the triple-deck scalings involving the Reynolds number, a com-
prehensive programme to process the data was written. This programme, called
POSTPROCESSING and shown as source code in A.4, consists of several subrou-
tines and modules that read in the �ow parameters from the principal input �le
input.dat and the parameters of the scaling to be applied from the post-processing
input �le ppinput.dat. From the latter it reads in the parameters shown and ex-
plained in Tab. 2.1. The programme allows � amongst others � to set the origin,
to specify the variables to be scaled and the exponents to the Reynolds number
to be used for the scaling. It then calculates these scalings, prints out the results to
resc.dat and creates a customised �le for launching gnuplot with the appropriate
parameters.

� The programme GATHERING assembles the centvtnnnn.dat �les giving the centre-
line values at points in time into one �le, thus creating a t-x-�eld spanning over the
whole length and the complete simulation time. This �eld, when visualised, was
considered to be useful for tracing the origin of the numerical instabilities observed.
The programme code is listed in A.5.

1 0 ADDMF (Add base flow field to perturbation field)

2 1 ORIGIN (Set x-origin to: 0: inflow , 1: TE, 2: LE)

3 1 RESCX (Scale x on Reynolds number)

4 0 ETAZETASC (Scale on 0=unchanged , 1=y, 2=eta , 3=zeta)

5 0 PLOT (Plot via gnuplot)

6 1 RESCY (Scale zeta/y/eta on Reynolds number)

7 1 RESCUV (Scale u and v on Reynolds number)

8 -0.25 XSCE (Exponent to Reynolds number when scaling x)

9 0.25 YSCE (Exponent to Reynolds number when scaling y)

10 0.25 USCE (Exponent to Reynolds number when scaling u)

11 0.125 VSCE (Exponent to Reynolds number when scaling v)

12 0.5 VORSCE (Exponent to Reynolds number when scaling p)

Table 2.1. � Exemplary ppinput.dat �le.

34

3. Realisation of Simulations

The following chapter shows under which settings the simulations were actually carried

out. The individual in�uence of the numerical parameters would be of highest interest if

a stable and meaningful simulation would be possible � however, as this is not achieved,

they show which parameters are not at the root of the arti�cial instability. Additionally,

a method how the wavenumber of the perturbation could have been extracted from the

�ow is presented, together with re-dimensionalisations that give an impression of what

the physical values of the results would be.

3.1. Choice of Numerical Parameters

Numerical behaviour, in particular numerical stability of the solution (in contrast to the
physical stability in the focus of this thesis), is a major concern when running computer
simulations. The code used had evolved over long time and � in its latest evolution
taken as a basis for this research � had been optimized for boundary layer �ow over
a �xed surface plus the particular case of �ow around the trailing edge, where some
simulations were made previously. However, for the case of wake �ow, including the
newly added feature of an arbitrary prescribed mean �ow, no experience existed to rely
on. Considerable e�orts were therefore taken on the choice of numerical parameters of
the code to gain usable results.

The obstacle to this was that global oscillations of the whole domain in the form
of a standing wave with increasing wavelength occurred as soon as any minimal body
forcing was applied � both for the trailing edge �ow and the prescribed wake �ow, at all
meaningful Reynolds numbers and forcing frequencies. The supposed standing wave
shape of this hinted to an oscillation emerging at the in�ow and being re�ected by the
out�ow ��xed end� of the domain. Its amplitude growth was such that it outweighed the
physical phenomena within short time, in Fig. 3.1 (p. 37) through Fig. 3.3 (p. 39) these
domain oscillations can be seen as wave �humps� for higher points in time2.

To supplement the search for principal errors in the code, which was done as far as the

2 The frequency of this oscillation was relatively insensitive to the parameters discussed below for
lower amplitudes but became variable for higher amplitudes. To avoid that a di�erence in momentary
amplitude depicted for a certain time is due to a di�erence in phase instead of a di�erence in maximum
amplitude for di�erent parameter settings, only time shots where the amplitude of this oscillation
remained moderate are given in the following graphs.

35

3.1. Choice of Numerical Parameters

insight into the code allowed, an empirical approach should help to �nd out whether any
of the parameters determining the functioning or the code contributed to or was causing
the instability. Accordingly, an immense set of simulations with several hundreds of per-
mutations of the numerical parameters was performed to �nd the optimal con�guration.
Below, the individual contributions of each parameter involved are discussed.

3.1.1. Stream-wise Grid Step Size and Time Step Size

Stream-wise grid step size ∆x and time step length ∆t obviously had an in�uence on
the stability of the simulation. With �ner resolution of the numerical discretisation �
while observing theCourant�Friedrichs�Lewy condition ∆x> ∆t, as the convective
velocity is in the order of 1 � other spurious e�ects could be eliminated but, unfortunately,
re�ning the simulation did not lead to complete stability and the global oscillations
remained.

The optimum values, keeping computing time moderate, were ∆x = 1 and ∆t = 0.5.

3.1.2. Domain Length and Forcing Location

Additionally to the instability described above, a high-frequency oscillation forming di-
rectly behind the in�ow, spanning over a length of about 50 and decaying then could
be observed initially. In Fig. 3.1 (p. 37) the graphs for t = 150 reveal this oscillation.
This was relatively simply resolved by placing the location where the body forcing is
introduced su�ciently far downstream, together with a greater total domain length to
minimize downstream e�ects. The amplitude of this noise then remained limited to about
six magnitudes less than the actual �ow e�ects and these disturbances posed no further
concern.

3.1.3. Forcing Length Scale and Mapping Constant

Neither the scaling factor to the forcing in x-direction lxf nor the one for y-direction
lyf showed any signi�cance for the problem. They were set constantly to 10 and 0.5,
respectively.

The same is true for l; the mapping constant used to map y onto ζ did not show to
have an in�uence on the numerical instability. The value of l was �xed at 4 to get a good
balance between domain width and resolution around the centreline.

3.1.4. Number of Iterations per Time Step

Interestingly, the �ow seemed to be more susceptible for the domain oscillation mentioned
above with a higher number of iterations per time step as could be seen in Fig. 3.1 (p.

36

3.1. Choice of Numerical Parameters

37). There was a dependence from grid and time resolution but comparison revealed an
optimum at the value of 5 when ∆x and ∆t chosen as above.

x

ω
t

0 100 200 300 400 500 600
10-14

10-12

10-10

10-8

10-6

10-4

10-2

Nit=4, t=30
Nit=4, t=150
Nit=8, t=30
Nit=8, t=150
Nit=16, t=30
Nit=16, t=150

Figure 3.1. � Absolute value of the perturbation vorticity versus streamwise coordinate at
di�erent times and for di�erent numbers of iterations per time step for ∆x = 1.0, ∆t = 0.5,

Ny = 64, Re = 1000, Q = 0.9, ω = 0.4.

3.1.5. Order of CHEBYSHEV Polynomials

Normal grid resolution, determined by the order of the Chebyshev polynomial discretis-
ing the variables in y-direction, showed to have an ambiguous in�uence on the amplitude
of the global domain oscillation.

From Fig. 3.2 (p. 38) it is obvious that an order of 32 leads to considerably higher
parasitic oscillations than an order of 64. Fig. 3.3 (p. 39) in contrast, reveals an inverse
relationship when a high number of iterations per time step are used. Since we decided
for 5 iterations per time step, the higher normal grid resolution was chosen.

3.1.6. Outflow Condition

As the whole domain oscillation seemed like a problem involving the boundary conditions,
trying several out�ow conditions seemed to be helpful. For the downstream border of

37

3.1. Choice of Numerical Parameters

x

ω
t

0 100 200 300 400 500 600
10-14

10-12

10-10

10-8

10-6

10-4

10-2

Ny=32, t=30
Ny=32, t=90
Ny=32, t=150
Ny=64, t=30
Ny=64, t=90
Ny=64, t=150

Figure 3.2. � Absolute value of the perturbation vorticity versus streamwise coordinate at
di�erent times and for two orders of Chebyshev polynomials for ∆x = 1.0, ∆t = 0.5,

Nit = 4, Re = 1000, Q = 0.3, ω = 0.4.

the domain the two possibilities discussed in 2.5, together and without a bu�er domain
at out�ow end were explored. Anyhow, no change to the problem could be found.

3.1.7. Relaxation Parameter and Initial Value for Next Time Step

If the iterative solution of the implicit central di�erence scheme (cf. 2.2.2) is chosen, then
a starting value for vl,0

k can be derived from the previous time step. The parameter for
the relaxation applied on the Poisson solver for the normal velocity is %; it had no
in�uence on the stability problem.

3.1.8. Forcing Amplitude

The forcing amplitude Af is directly in�uencing the disturbance amplitude but the nu-
merical instability was not dependent on this at all. For the simulations of which the
results are shown in this chapter, a value of 10−10 was chosen.

38

3.2. Implementation for Grid Computing

x

ω
t

0 100 200 300 400 500 600
10-14

10-12

10-10

10-8

10-6

10-4

10-2

Ny=32, t=30
Ny=32, t=90
Ny=32, t=150
Ny=64, t=30
Ny=64, t=90
Ny=64, t=150

Figure 3.3. � Absolute value of the perturbation vorticity versus streamwise coordinate at
di�erent times and for two orders of Chebyshev polynomials for Nit = 16, other parame-

ters as above.

3.2. Implementation for Grid Computing

For the execution of the massive number of simulations, a computing grid of the Welsh
e-Science Centre (WeSC) comprising four 8 processor SGI Origin 300 machines was at
disposal. A load balancing and job distribution software called Condor could be charged
with a batch of simulations to be performed independently and using the considerable
computing resources of the cluster in coordination with jobs sent by other users. The
gain of running the simulations on this WeSC Condor grid was a execution time reduced
by about a factor of ten compared with a local Unix workstation.

Running the code on the grid system required some adaptations to the computing
environment di�erent from the one the code was used on previously. The compiler
producing the 64 bit version executable required some speci�c input / output settings and
prohibited some commands that had to be replaced by equivalents. For initiating the
batch execution, a Unix shell script was written that writes for every set of parameters
adjusted input �les, creates directories named accordingly, copies necessary �les into
their respective directories and launches the Condor job via a tailored start-up �le. An
example of such a script is attached in A.2.

39

3.3. Identi�cation of Wavenumber

When the simulation runs stable, this adaptation to a high power computing environ-
ment allows to e�ciently execute an enormous number of simulations in parallel and
with that to carry out parametric studies of the disturbance evolution. The approach
intended to be followed at the outset of this work was to trace the in�uence of e. g. the
forcing frequency and amplitude, the Reynolds number, the pro�le velocity ratio etc.
by changing these parameters individually or combined in small steps and to determine
their in�uence on stability of the �ow.

3.3. Identification of Wavenumber

Two values absolutely necessary for further steps of the stability analysis are the real
and imaginary part of the wavenumber of the oscillating disturbances obtained from
numerical simulation. Using the di�erent αi obtained from a high number of simulations
� when they can be performed � with varying ωr, Re and so on, a stability diagram
giving the relationship αi vs. ωr can be drawn. Since the �ow data from the simulation
is at hand in the form of discrete values at x- and y-stations, this data has to be related
to an analytical expression which then gives the wavenumber.

We chose to �t a pre-de�ned function with unknown parameters to the data using an
implementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg algo-
rithm as it is provided by the ��t� function of the software package gnuplot (Crawford,
2004).

The function to represent the values is

h(x) = A e−αix cos(αrx+ ϕ) , (3.1)

which corresponds to the ansatz of the analytical stability analysis, extended by the phase
shift ϕ to account for the prescribed origin of the perturbation i. e. the forcing location.

To exclude transitional e�ects during the development of the perturbation immediately
downstream of the forcing, only data points with a distance of minimal 20 to the forcing
location are taken into account.

As visible in Fig. 3.4 (p. 41), the interpolation function �ts very well the data points
in the segment of the highest amplitudes and therefore the retained imaginary and real
wavenumber should correlate highly accurately with the true value in this section. Since
a gap between amplitudes of the analytical function and the data points is perceivable
for later segments of the oscillation while the phase is still well matched, it becomes
clear that the imaginary wavenumber is not constant over the whole perturbation wave.
Therefore only points up to a certain downstream position (in the example below this is
450) are taken into account for the data �t. Additionally, the least-squares characteristic
of the algorithm assures that the data points with high amplitudes are the relevant ones
for determining the value of αi.

40

3.4. Examples of Physical Interpretations

The print-out of results from the ��t� function for the data depicted in Fig. 3.4 (p.
41) reads as shown in Tab. 3.1 (p. 42).

x

ω

300 400 500 600

Discrete data
Interpolation function

3x10-10

2x10-10

1x10-10

0

-1x10-10

-2x10-10

-3x10-10

Figure 3.4. � Example of an interpolation of data points for �nding real and imaginary
wavenumber. The data interpolated here is the vorticity ωz from a generic stable con�gura-

tion, obtained from the �rst time steps before the arti�cial instability overrides.

3.4. Examples of Physical Interpretations

The variables involved are all non-dimensional and of global validity; however, to get a
feeling for the physical and technical relevance of the values appearing in the stability
analysis, a short excursus to dimensional values should be done here. Especially inter-
esting is the dimensional value of the frequencies imposed. Some exemplary values are
printed in Tab. 3.2 (p. 43).

41

3.4. Examples of Physical Interpretations

1 FIT: data read from 'centvt0555.dat ' us 1:7

2 #datapoints = 131

3 residuals are weighted equally (unit weight)

4

5 function used for fitting: f(x)

6 fitted parameters and initial values from file: 1dim3.par

7

8 Iteration 0

9 WSSR : 6.47444e-019 delta(WSSR)/WSSR : 0

10 delta(WSSR) : 0 limit for stopping : 1e-010

11 lambda : 0.00868933

12

13 initial set of free parameter values

14 A = 2e-010

15 alpha_i = 0.01

16 alpha_r = 0.42

17 phi = 2.8

18

19 After 152 iterations the fit converged.

20 final sum of squares of residuals : 1.36424e-021

21 rel. change during last iteration : -1.7595e-011

22

23 degrees of freedom (ndf) : 127

24 rms of residuals (stdfit) = sqrt(WSSR/ndf) :

3.27751e-012

25 variance of residuals (reduced chisquare) = WSSR/ndf : 1.0742

e-023

26

27 Final set of parameters Asymptotic Standard Error

28 ======================= ==========================

29 A = 2.55292e-008 +/- 1.285e-009 (5.035%)

30 alpha_i = 0.0151035 +/- 0.0001456 (0.9642%)

31 alpha_r = 0.404437 +/- 0.0001488

(0.03679%)

32 phi = 8.55782 +/- 0.05223 (0.6103%)

33

34 correlation matrix of the fit parameters:

35 A alpha_ alpha_ phi

36 A 1.000

37 alpha_i 0.995 1.000

38 alpha_r -0.113 -0.179 1.000

39 phi 0.115 0.180 -0.997 1.000

Table 3.1. � Print-out of results from the ��t� function for exemplary data.

42

3.4. Examples of Physical Interpretations

η∗ [kg
m s] 17.3 · 106 η∗ [kg

m s] 1.00 · 103

ρ∗ [kg
m3] 1.225 ρ∗ [kg

m3] 1000
ν∗ [m

2

s] 14.1 · 106 ν∗ [m
2

s] 1.00 · 106

U∗∞ [ms] 10.0 Re [−] ω∗ [rads] f∗ [Hz] Re [−] ω∗ [rads] f∗ [Hz]
ω [−] 1 1 7.08 · 106 1.13 · 106 1 100 · 106 15.9 · 106

10 708 · 103 113 · 103 10 10.0 · 106 1.59 · 106

100 70.8 · 103 11.3 · 103 100 1.00 · 106 159 · 103

1000 7.08 · 103 1.13 · 103 1000 100 · 103 15.9 · 103

10000 708 113 10000 10.0 · 103 1.59 · 103

ω [−] 0.1 1 708 · 103 113 · 103 1 10.0 · 106 1.59 · 106

10 70.8 · 103 11.3 · 103 10 1.00 · 106 159 · 103

100 7.08 · 103 1.13 · 103 100 100 · 103 15.9 · 103

1000 708 113 1000 10.0 · 103 1.59 · 103

10000 70.8 11.3 10000 1.00 · 103 159

ω [−] 0.01 1 70.8 · 103 11.3 · 103 1 1.00 · 106 159 · 103

10 7.08 · 103 1.13 · 103 10 100 · 103 15.9 · 103

100 708 113 100 10.0 · 103 1.59 · 103

1000 70.8 11.3 1000 1.00 · 103 159
10000 7.08 1.13 10000 100 15.9

U∗∞ [ms] 100.0 Re [−] ω∗ [rads] f∗ [Hz] Re [−] ω∗ [rads] f∗ [Hz]
ω [−] 1 1 70.8 · 106 11.3 · 106 1 1.00 · 109 159 · 106

10 7.08 · 106 1.13 · 106 10 100 · 106 15.9 · 106

100 708 · 103 113 · 103 100 10.0 · 106 1.59 · 106

1000 70.8 · 103 11.3 · 103 1000 1.00 · 106 159 · 103

10000 7.08 · 103 1.13 · 103 10000 100 · 103 15.9 · 103

ω [−] 0.1 1 7.08 · 106 1.13 · 106 1 100 · 106 15.9 · 106

10 708 · 103 113 · 103 10 10.0 · 106 1.59 · 106

100 70.8 · 103 11.3 · 103 100 1.00 · 106 159 · 103

1000 7.08 · 103 1.13 · 103 1000 100 · 103 15.9 · 103

10000 708 113 10000 10.0 · 103 1.59 · 103

ω [−] 0.01 1 708 · 103 113 · 103 1 10.0 · 106 1.59 · 106

10 70.8 · 103 11.3 · 103 10 1.00 · 106 159 · 103

100 7.08 · 103 1.13 · 103 100 100 · 103 15.9 · 103

1000 708 113 1000 10.0 · 103 1.59 · 103

10000 71 11.3 10000 1.00 · 103 159

Table 3.2. � Dimensionalised values of the �ow of air and of water at two di�erent free-
stream velocities, for two di�erent disturbance frequencies and at �ve di�erent Reynolds

numbers.

43

4. Trailing Edge Structure

The basic state without introduction of disturbances could be simulated without nu-

merical instabilities and thus can be used to examine the quality and credibility of the

�ow the PCNAVWAKEBD code produces. This will be done in this chapter by comparing

the numerical results with what asymptotical theory (triple-deck theory, which will be

reviewed in short) predicts for the delicate region around the trailing edge of the �at

plate.

4.1. Theoretical Reasoning

Classical boundary layer theory, as introduced by Prandtl (Prandtl, 1904), holds for
the viscid �ow over a �xed surface and Blasius' solution (cf. 1.4) to the equations gives
the velocity pro�le over the plate. Goldstein's theory (Goldstein, 1930) shows that
the Blasius solution continues in the wake of the plate but it entrails the so-called
Goldstein singularity immediately at the trailing edge: due to the discontinuity of the
streamwise velocity u from no-slip to �nite centreline value (therefrom also a discontinuity
in the slope of the displacement thickness ∂δ∗

∂x), the transverse velocity v is singular in this
point. The pressure, involved in the Prandtl boundary layer equations, also becomes
singular when approaching the trailing edge from upstream and this additionally leads
to a discrepancy between computed and real drag coe�cient.

To cope with this problem, a multi-structured asymptotic theory, that regards the
dependency of the structure and the �ow variables from the Reynolds number, was
suggested mainly by Messiter (Messiter, 1970) and Stewartson (Stewartson, 1969).
This so-called triple-deck theory removes the trailing edge singularity by higher order
expansions involving the Reynolds number and states the existence of three subse-
quent regions located above each other: In the lower deck (also called viscous sub-layer
or wall layer) the classical boundary layer equations apply and with the altered bound-
ary condition at the trailing edge it corresponds to Goldstein's inner viscous wake.
The parabolic nature in this region inhibits upstream in�uence. The main deck corre-
sponds to Goldstein's outer wake which to �rst order is the inviscid continuation of
the Blasius boundary layer solution. In the additional inviscid upper (or outer) deck
the displacement of the wake induces a pressure force, which in turn, acts on the lower
deck � also in upstream direction since the �ow in the upper deck is of elliptic type.
Within the streamwise extent of the triple-deck region, the downstream wake in�uences

44

4.2. Triple-Deck Scalings

the upstream boundary layer on the plate via viscously-induced interaction with the po-
tential �ow upper deck. Accordingly, triple-deck theory is characterised not only by a
di�erent wall-normal segmentation of the �ow domain but also by an interactive instead
of hierarchical nature.

4.2. Triple-Deck Scalings

The expansions found by the triple-deck theory scale the geometry of the �ow in terms of
powers of the Reynolds number. Detailed discussion on that subject, that is reviewed
brie�y below, may be found in Schlichting and Gersten (2006); Rothmayer and Smith
(1998); Smith (1982); Jobe and Burggraf (1974), e. g.

Examination of the pressure gradient around the trailing edge supposes an expansion

in the order of ε = Re
− 3

8
x∗ .

As the problem is centred on the trailing edge, the origin for the local coordinate X
will be shifted to this point.

The �rst assumption for �nding the appropriate scalings is that the alteration of the
velocity pro�le entirely takes place in the lower deck and that the slope of the Blasius
pro�le in this deck can be approximated as constant, which means treating it as a uniform

shear layer. With the boundary layer thickness δ∗ = O
(
Re

1
2
x∗

)
and the lower deck

thickness stated as Y L = O
(
δ/δ∗

)
, with the parameter δ yet to be determined, then for

the streamwise velocity in the lower deck it follows UL = O (δ) because of the uniform
shear. The induced pressure must be p = O

(
δ2
)
for its gradient to balance the inertial

forces of O
(
UL 2

)
. If the length of the triple deck region is χ then the balance with

the viscous forces requires δ = O
(
χ

1
3

)
. The passive main deck only translates the

displacement provoked by the trailing edge �ow (which adds to the displacement of
the boundary layer) to the upper deck, i. e. it is shifted by the lower deck thickness,
while the pressure therefore is assumed to remain unaltered across the main deck. The
pressure disturbance evolving from the displacement in the upper deck is of the order

of the displacement slope, namely O
(

δ/δ∗

χ

)
. This external pressure should match the

plate pressure O
(
δ2
)
in magnitude. When �nally combining all these conditions, we get

the basic triple-deck scalings χ = O (ε), X = O (ε), δ = O
(
ε

1
3

)
, UL = O

(
ε

1
3

)
, and

p = O
(
ε

2
3

)
.

To satisfy the continuity equation it must be O
(

UL

χ

)
= O

(
V L

δ/δ∗

)
and therefore V L =

O (ε).

The displacement and the pressure disturbance exercised on the outer deck must be

45

4.2. Triple-Deck Scalings

linked to a normal velocity that must originate from the main deck and have the same

order of magnitude, i. e. VM = O (p) = O
(
ε

2
3

)
. With the height of the main deck

identical to the boundary layer thickness δ∗, the streamwise velocity scaling is gained

from continuity equation again: O
(

UM

χ

)
= O

(
V M

δ∗

)
and therefore UM = O

(
ε

1
3

)
.

The same argument gives that V U = O (p) = O
(
ε

2
3

)
. As the upper deck is part of

the inviscid potential �ow with the �ow structure around the trailing edge having no
direct in�uence to it, its scaling in x- and y-direction must be the same: Y U = O (X).
Consequently the streamwise velocity must be of same order as the normal velocity, which

means UU = O
(
ε

2
3

)
.

When translating these estimates of orders of magnitude into actual variable scalings,
the use of the Reynolds number based on the displacement thickness is practical for
our simulations. This is done using equations (1.84) and (1.71) and making some further

estimates of orders of magnitude for the basic �ow variables; a constant factor of
(
2δ2[η]

)a

appearing there is dropped because it is irrelevant for our qualitative examination. Even-
tually, the following scalings apply:

XL = Re−
1
4 (x− xTE) (4.1)

Y L = Re
1
4 y (4.2)

UL = Re
1
4u (4.3)

V L = Re
1
8 v (4.4)

PL = Re
1
2 p (4.5)

XM = Re−
1
4 (x− xTE) (4.6)

YM = Re0y (4.7)

UM = Re
1
4u (4.8)

VM = Re
1
2 v (4.9)

PM = Re
1
2 p (4.10)

XU = Re−
1
4 (x− xTE) (4.11)

Y U = Re−
1
4 y (4.12)

UU = Re
1
2u (4.13)

V U = Re
1
2 v (4.14)

PU = Re
1
2 p (4.15)

46

4.3. Comparison of Numerical Results with Asymptotic Theory

4.3. Comparison of Numerical Results with Asymptotic
Theory

A �rst opportunity to scrutinise the quality of the results obtained from our numerical
simulations using the PCNAVWAKEBD code is the examination of the �ow structure produced
for the region around the trailing edge. Not only is this structure both restricted to a very
small area and associated with analytically singular values and steep gradients but it is
taking place around the area where the numerical properties are fundamentally changed
by an alteration of the boundary conditions � from the no-slip condition on the rigid wall
to the symmetry condition of the wake. Therefore, this test of the basic state simulation
can be considered a relatively rigorous one.

4.3.1. Scaling and Structures

The accordance of the results obtained from numerical simulation with the structures pre-
dicted by triple-deck theory can easily veri�ed by scaling the �ow �eld as the expansions
for the di�erent decks suppose and as detailed above. Values obtained from simulations
accomplished under di�erent Reynolds numbers should coincide in the respective X�
Y �U/V /P space as the dependency from the Reynolds number should be removed by
the scaling.

Fig. 4.1, 4.2 and 4.3 (pp. 48, 49 and 50) give the distribution of the variables u, v and
p over x after applying these scalings for upper, main and lower deck, respectively.

When we return to Reynolds numbers based on streamwise distance, using (1.84), we
see that the range Re = 10 . . . 10000 corresponds to the range Rex∗ = 1.72× 102 . . . 108

and therefore this is a span of seven magnitudes. Given this fact, the results in Fig. 4.1,
4.2 and 4.3 (pp. 48, 49 and 50) may be considered as coinciding quite well, especially
when not focusing on the �low Reynolds number� regime Rex∗ = 172.

At the near right corner of Fig. 4.1 (p. 48) (X
<→ 15, Y >→ 2) a steep increase of U

can be noticed for Re = 10, with U departing the otherwise good qualitative congruence
with results from other Reynolds numbers. An explanation to this is probably the
small-scale velocity perturbation as discussed in 5.1, that is most apparent for this low
Reynolds number.

4.3.2. Centreline Velocity

Asymptotic theory gives the centreline velocity as

U(X, 0) = 0.8991 · 1.343
2
3X

1
3 +O

(
X

2
3

)
, (4.16)

as determined by Jobe and Burggraf (1974).

47

4.3. Comparison of Numerical Results with Asymptotic Theory

-0.1

0

0.1

0.2

0.3

0.4

-15
-10

-5
0

5
10

15 2
3

4
5

6
7

8
9

10

U

X
Y

Re = 10
100

1000
10000

Figure 4.1. � Scaled streamwise velocity in the upper deck for several Reynolds numbers
in the scaled coordinates.

In Fig. 4.4 (p. 51) this value is plotted together with the results obtained from the
simulations with the PCNAVWAKEBD code. A qualitative accordance is clear, even in quan-
titative terms the di�erence is moderate for higher Reynolds numbers.

4.3.3. Pressure

The pressure in the triple deck region is related to the so-called slip velocity A(X), that
can be obtained from asymptotic theory, via the Hilbert integral

P (X) =
1
π

∞∫
−∞

∂A
∂ξ dξ

X − ξ
, (4.17)

which was solved numericaly e. g. by Jobe and Burggraf (1974).

Comparison of the results obtained here with the results from asymptotic theory can
be seen in Fig. 4.5 (p. 52).

48

4.3. Comparison of Numerical Results with Asymptotic Theory

-0.3

-0.2

-0.1

0

-15 -10 -5 0 5 10 152
3

4
5

6
7

V

X

Y

Re = 10000
1000

100
10

Figure 4.2. � Scaled normal velocity in the main deck for several Reynolds numbers in
the scaled coordinates.

49

4.3. Comparison of Numerical Results with Asymptotic Theory

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-15 -10 -5 0 5 10 150

1

2

3P

X

Y

Re = 10000
1000

100
10

Figure 4.3. � Scaled pressure in the lower deck for several Reynolds numbers in the
scaled coordinates.

50

4.3. Comparison of Numerical Results with Asymptotic Theory

X
-5 0 5 10 15

0

0.5

1

1.5

2

2.5

3

Re= 10
100

1000
10000

Jobe, Burggraf

UL

Frame 001 ⏐ 28 May 2007 ⏐ | | | |Frame 001 ⏐ 28 May 2007 ⏐ | | | |

Figure 4.4. � Centreline streamwise velocity for several Reynolds numbers and as cal-
culated with asymptotic theory by Jobe and Burggraf (1974).

51

4.3. Comparison of Numerical Results with Asymptotic Theory

X

P

-15 -10 -5 0 5 10 15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Re= 10
100

1000
10000

Jobe, Burggraf

P

Figure 4.5. � Pressure value in lower deck for several Reynolds numbers and as calcu-
lated with asymptotic theory by Jobe and Burggraf (1974).

52

5. Stability Analysis

As an alternative to the stability analysis by direct numerical simulation that could not

be carried out, the eigenvalue problem for the two basic �ow types can be solved. This

chapter outlines the approach to this, gives some �ndings about the simulated mean �ow

that were discovered here and presents the results of the eigenvalue solving. Dependence

of the stability properties from several parameters is discussed.

5.1. Idea and Approach

To get information on the stability properties of the �ow considered in this study with-
out being dependent on direct numerical simulation, the approach is to solve the eigen-
value problem for the partial disturbances as discussed in 1.8, namely to solve the Orr-
Sommerfeld equation (1.106).

The value of the stability analysis using the eigenvalue solver is to gain a basis for
comparison for the stability behaviour of the �ow obtained by direct numerical simulation
(involving wake �ow also coming from numerical simulation or from the prescribed mean
�ow concept). When both mean �ow types will be used in the direct numerical simulation
to carry out stability analysis by simulation, it will be very helpful and of high relevance
for being able to make reasonable comparisons, to know their correlation from a more
ideal-type setting. In this sense, the stability properties of both �ow types are determined
by eigenvalue analysis and their similarities and di�erences shall be worked out.

Concretely, the mean �ow drawn from the direct numerical simulation had a centreline
velocity at the downstream station chosen (cf. discussion below) of U t(x = 220, y = 0) =
0.3201 at Re = 500 and U t(x = 220, y = 0) = 0.2500 at Re = 1000, therefore a prescribed
mean �ow pro�le with Q = 0.6799 and Q = 0.75 respectively was taken as the reference
for comparisons. The similarity of the simulated and the prescribed velocity pro�les for
Re = 1000 can be assessed in Fig. 1.2 (p. 21).

During the evaluation of the DNS mean �ow for use for this stability analysis a problem
with the small-scale velocity distribution became apparent: as it can be seen in Fig. 5.1
(p. 54) the streamwise velocity U (i) converges to a value of over 1 at x-stations closely
behind the trailing edge and (ii) velocity pro�les �peak� at a point at around y = 3 for
greater x, while their respective U -distributions asymptotically approach a value of under
1 for y → ∞. When extending the simulation towards higher x and / or higher times t,
the U -values in the �hump� at around y = 3 grow boundless. Particular consequence of

53

5.1. Idea and Approach

that non-monotony is that the stability properties of the respective velocity distribution
will be altered � probably signi�cantly � due to the existence of additional in�exion
points.

That behaviour hints to a developing inherent instability, which is probably due to
instable growing modes that are introduced by numerical noise and error. It remains to
be examined whether this is also linked to the global domain instability, but it seems
improbable because instabilities excited by numerical truncation are not unusual. A
change in the domain size in y-dimension, e. g. a multiplication from y ∈ [−92.39, 92.39]
to y ∈ [−231.0, 231.0], did not a�ect this problem. The graphs did � apart from the
di�ering locations of the grid points � perfectly coincide, therefrom an in�uence of the y-
boundary can be excluded. For other Reynolds numbers the picture is also qualitatively
the same with the extreme values growing faster in time and space for lower Re, cf. Fig.
5.2 (p. 55).

The x-station 220, chosen for the stability analysis carried out with the LINSTAB code,
is safely placed between these two phenomena; its velocity distribution is monotonically
increasing and converges to 1 for both Re = 500 and Re = 1000.

y
3 4 5 6 7 8 9 10

0.994

0.996

0.998

1.000

1.002

1.004

x=200...230, Δx=1
x=231...325, Δx=3
x=220

U

increasing x

Figure 5.1. � Streamwise velocity U t for several x-positions from simulation at Re = 1000
and t = 400.

54

5.2. Numerical Method

y
2 3 4 5 6 7 8 9 10

0.994

0.996

0.998

1.000

1.002

1.004

1.006

1.008
x=200...230, Δx=1
x=231...325, Δx=3
x=220

U

increasing x

Figure 5.2. � Streamwise velocity U t for several x-positions from simulation at Re = 500
and t = 400.

5.2. Numerical Method

The LINSTAB code available for this analysis is an eigenvalue solver for linear stability
theory which solves the equation system of continuity equation, ideal gas law, momentum
equation and energy equation. This means it is designed to cope with compressible �ow
but for the use here, the Mach number is set to 0.001, so it restricts to incompressibility,
and e�ectively solves the Orr-Sommerfeld equation. Refer to the work of Babucke
(n.d.) for details on the theoretical and numerical aspects of LINSTAB.

For every speci�ed x-station and for a given wavenumber αr (with αi = 0) LINSTAB
returns the eigenvalues ωr + iωi and additionally to this spectrum, the associated eigen-
functions φ(y) for u, v and p are given with amplitude and phase.

The general approach here is a temporal stability analysis, which can be transformed
onto the spatial stability problem by means of an eigenvalue following routine. Such a
programme iteratively adjusts αi to assure that ωi vanishes, which then returns αr + iαi

for �xed ωr for the spatial stability analysis. This is another task to be persued in the
course of a subsequent study that takes up the results gained here.

55

5.3. Realisation of Numerical Analysis

Both the mean �ow obtained from running the PCNAVWAKE code with a trailing edge
within the simulation domain, and the prescribed mean �ow, which is itself foreseen as
comparison basis for the results from the complete simulation, were examined for stability
behaviour. As the prescribed mean �ow is constant in x, the result for one station is
valid for all stations but with the non-parallel wake-�ow from the direct simulation a
dependence on the downstream position can be investigated. This, of course, requires
usable velocity pro�les for all x-stations that are not available here, as discussed above.

5.3. Realisation of Numerical Analysis

In preparation for the execution of the eigenvalue solving, the mean �ow produced by the
PCNAVWAKE code had to be projected onto an equidistant grid as the LINSTAB code requires
such an even spacing of the grid points. To achieve this, a linear interpolation, using the
data processing and visualisation tool Tecplot, was applied. The range y ∈ [−10, 10],
represented by 115 original grid points, was interpolated by 301 new data points. In
the inner part around the centreline with higher gradients, the original spacing was
very narrow (e. g. 81 grid points in the range y ∈ [−1.86, 1.86], making up an averaged
spacing of 0.022), so with the constant spacing of 0.066 for the new grid, other types
of interpolation would not have yielded any advantage. Likewise, in the outer regions
where the original spacing are coarser than the new one, gradients are so small and
nearly constant so that a linear interpolation was considered su�cient in accuracy also
seen from that side. As the original grid is equidistant in x-direction, no change was
applied in this dimension.

The prescribed mean �ow was obtained in the correct format by creating a new in-
dependent programme derived from the PRESCMF module and adjusting it such that it
produces the �ow on an equidistant grid.

The EAS3 code � also provided by Institut für Aerodynamik und Gasdynamik � that
performs the read-in of the mean �ow for the LINSTAB code was adapted to the �le format
and formatting stemming from the PCNAVWAKE standard and some parameter settings of
LINSTAB were tuned to arrive at producing meaningful results.

To get a signi�cant picture of the stability, a certain number of solver runs, with
varying parameters, were performed.

In order to rationalise launching of the solver runs and the processing of the data
produced, again some Unix shell scripts were written; they can be consulted in A.6.

5.4. Results

The direct output of the solver is a spectrum for the given �ow and for a pre-speci�ed
real wavenumber αr, for which Fig. 5.3 (p. 57) gives two examples. It is visible that

56

5.4. Results

� as expected for such an unbounded �ow decaying to a constant in the freestream �
there is a continuous spectrum of eigenvalues (the vertical accumulation of eigenvalues
that remain discrete points here because of the numerical discretisation) and a range
of discrete eigenvalues. Some eigenvalues are expected to be numerical eigenvalues not
having any physical meaning. As the �ow is symmetric in y, there is only one continuous
spectrum.

ωr

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

ωi

Varicose instable eigenvalue

Sinuous instable eigenvalue

Re=1000
Re= 500

Figure 5.3. � Spectrum of the prescribed �ow for two Reynolds numbers at αr = 3·10−2

and Q = 0.75.

On the other hand, Fig. 5.3 shows that the discrete eigenvalues move towards the
continuous sprectrum for decreasing Reynolds numbers and one by one ultimatively
move onto it, as it should be expected, and move towards ωi = 0 as the �ow gets less
viscous.

After identifying the instable eigenvalues � if there are any � and repeating the proce-
dure for other wavenumbers, all instable eigenvalues are gathered in one graph.

Fig. 5.4 (p. 58) through Fig. 5.10 (p. 64) give an overview of these extracts of the
results obtained from the linear stability solver execution.

Generally, it is apparent that two di�erent modes of instability form for the �ow under
consideration � represented by the two curves in the eigenvalue diagrams. Mode I (the

57

5.4. Results

more unstable, dominant one) is a varicose mode with the streamfunction and thereby
the variables antisymmetric in y and mode II (the less unstable one in the lower right
corner) is a sinuous mode with a symmetric streamfunction and symmetric distribution
of physical quantities. In Fig. 5.11 (p. 65) this symmetry behaviour is re�ected (cf.
5.4.5).

For all con�gurations examined, the �ow is unstable for wavenumbers between αr = 0
and αr ≈ 11.8 . . . 13.3 · 10−2, at frequencies between ωr = 0 and ωr ≈ 6.2 . . . 8.0 · 10−2.
Maximum instability occurs for wavenumbers of αr ≈ 5.0 . . . 6.0 · 10−2 at frequencies
of about ωr ≈ 3.4 . . . 4.4 · 10−2 with temporal growth rates of ωi ≈ 6.3 . . . 8.0 · 10−3.
In principle the varicose mode is the more instable one but for a small range of low
wavenumbers / large wavelengths of αr = 0 to αr ≈ 1.0 . . . 1.2 · 10−2 the sinuous mode is
less stable for some (not all) �ow con�gurations.

5.4.1. Simulated and Prescribed Flow Stability Properties

The foremost interest is to compare the simulated and the prescribed �ow in their respec-
tive stability properties and Fig. 5.4 and Fig. 5.5 (p. 59) allow to do so.

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Prescribed
Simulated

0.001

0.01

0.01

0.02

0.02

0.04

0.04

0.06

0.06

0.05

0.05

0.08

0.09

0.10

0.12

0.03

0.03

0.11

0.13

0.07

Figure 5.4. � Instable eigenvalues of the simulated and the prescribed (Q = 0.6799) �ow
at Re = 500.

58

5.4. Results

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Prescribed
Simulated

0.03

0.03

0.02

0.04
0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.04

0.05

0.06
0.01

0.02

0.01

0.001

Figure 5.5. � Instable eigenvalues of the simulated and the prescribed (Q = 0.75) �ow at
Re = 1000.

The eigenvalue distributions do not perfectly coincide for all wavenumbers but for the
lower range up to αr ≈ 3 · 10−2 the congruence is very well. At the higher range, the
αr-isolines' vertical orientation (particularly ideally for Re = 500) and the relatively even
spacing between the two curves suggest a linear scaling between them � the reasons for
that hypothetic relationship remain to be clari�ed.

The exact values of ωr = 0 and ωi for the case Re = 500 for both simulated and
prescribed �ow, together with the ratios and di�erences of them to show their relation,
can be inspected in Tab. 5.1 (p. 66).

5.4.2. Variation with Profile Velocity Ratio

When focusing on the prescribed �ow, a comparison of the �ow with varying pro�le veloc-
ity ratio Q can be done. As Fig. 5.6 (p. 60) and Fig. 5.7 (p. 61) show, a lower value of Q
comes with lower growth rates but within a higher range of instable frequencies, whereas
the marginally instable wavenumber remains constant (the last αr-isoline, though not
drawn, would be exactly horizontal).

Fig. 5.6 (p. 60) also reveals another point: the spacing between the three eigenvalues

59

5.4. Results

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Q=0.6

Q=0.75
Q=0.6799

0.001

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.10

0.12

0.13

0.11

0.09

0.070.05

0.03

0.03

0.01

0.01

0.05

Figure 5.6. � Instable eigenvalues of the prescribed �ow at Re = 500 and di�erent pro�le
veloctiy ratios.

for a given wavenumber apparently always has the same ratio (i. e. the ratio of the lengths
of the αr-isolines to both sides of the curve forQ = 0.6799 is constant). The details tabled
in Tab. 5.2 (p. 67) con�rm that and also show that this ratio is equal to the ratio of
the pro�le velocity ratios (within less than 0.4 %). That can only mean that there must
be a direct linear relationship between the pro�le velocity ratio and the location of an
eigenvalue for a given wavenumber. A conclusion from that is that the wavenumber from
which the most unstable eigenvalue is excited must be the same for all pro�le velocity
ratios considered � con�rmed by Fig. 5.6 (p. 60) and Fig. 5.7 (p. 61).

5.4.3. REYNOLDS Number Dependence

One can expect that the Reynolds number dependence on the instability is, for the
simulated �ow, primarily in�uenced by the di�erent velocity pro�les that come with
di�erentReynolds numbers. Accordingly, Fig. 5.9 (p. 63) and Fig. 5.8 (p. 62) show two
totally di�erent situations: The Reynolds number is not a parameter for the prescribed

60

5.4. Results

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Q=0.6
Q=0.75

0.001

0.01

0.01

0.02

0.02

0.03

0.04

0.05

0.06

0.02

0.03

0.04
0.05

0.06
0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.02
0.01

Figure 5.7. � Instable eigenvalues of the prescribed �ow at Re = 1000 and di�erent pro�le
veloctiy ratios.

mean �ow3, which is manifested when looking into the eigenfunctions that also coincide
for all wavenumbers4. Obviously, any in�uence of Re is negligible in the governing
equations.

On the other hand, for the simulated �ow, the location of the eigenvalues is di�erent
for the two curves, thus suggesting that this is entirely due to the di�erently shaped
streamwise velocity distribution. In general, the picture agrees with the fact that the
instabilities here are expected to be inviscid instabilities, i. e. appearing for both viscous
and non-viscous �ow.

3 Note that the divergence of the eigenvalues for αr = 0.001 and 0.01 is most probably a numerical error:
even in the curve showing the Mach number there is this deviation and here it is very improbable
that just for these two points there should be a di�erence.

4 With the exception that the amplitude of the eigenfunction for αr = 0.01 does not decay to 0 but
slowly rises again while oscillating, together with a phase shift of 0.7π for the associated phases; see
Fig. 5.12 (p. 68). This could be an explanation to the deviation discussed in the footnote above

61

5.4. Results

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Re=1000
Re=500

0.13
0.001

0.01

0.02

0.03

0.04

0.05
0.06 0.07

0.08

0.09

0.10

0.11

0.12

0.01

0.02
0.03

0.04

0.05

0.06

Figure 5.8. � Instable eigenvalues of the prescribed �ow at di�erent Reynolds numbers
and Q = 0.75.

5.4.4. MACH Number Dependence

Finally, the change with the Mach number has to be considered as the solutions were
obtained by running a solver that deals intrinsically with compressible �ow. As Fig. 5.10
(p. 64) shows, there is no in�uence of theMach number (apart from the erratic values for
αr = 0.001 and 0.01, cf. footnote 3) for two magnitudes up from the �xed value chosen
here � thus choosing Ma = 0.001 was a safe choice for approximating incompressible
�ow.

5.4.5. Eigenfunctions

The eigenfunction with amplitude and phase is also determined by the solver, Fig. 5.11
(p. 65) gives the picture of one example for this. It can be seen that the characteristic
phase jumps are resolved and that the amplitudes follow the distributions expected for
the two modes: symmetric for the sinuous mode and antisymmetric for the varicose
mode.

62

5.5. Further Reading

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Re=1000
Re=500

0.001

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04
0.05

0.05

0.06

0.07

0.08

0.09

0.10

0.11
0.12

0.13

Figure 5.9. � Instable eigenvalues of the simulated �ow at di�erent Reynolds numbers.

5.5. Further Reading

The following literature was also reviewed during the study in preparation of the DNS
stability analysis that could not be carried out. It contains information that will be
relevant when this analysis can be conducted.

Chomaz (2003)
Crawford (2004)
Criminale et al. (2003)
Davies (2005)
Davies and Carpenter (2001)
Delbende and Chomaz (1998)
Dratler and Fasel (1996)
Drazin (2002)
Ferziger and Peri¢ (2002)
Goldstein (1930)
Hannemann and Oertel (1989)
Huerre (2002)

Huerre and Rossi (1998)
Jobe and Burggraf (1974)
Maekawa, Masour, and Buell (1992)
Mattingly and Criminale (1972)
Messiter (1970)
Monkewitz (1988)
Oertel (1990)
Prandtl (1904)
Rist and Fasel (1995)
Rothmayer and Smith (1998)
Schlichting and Gersten (2006)
Schmid and Henningson (2001)

63

5.5. Further Reading

ωr

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

ωi

Ma=0.1

Ma=0.001
Ma=0.01

0.03

0.03

0.04

0.05
0.06 0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.02

0.04

0.05

0.06

0.02

0.01

0.001

0.01

Figure 5.10. � Instable eigenvalues of the prescribed �ow at Re = 1000, Q = 0.75 and
di�erent Mach numbers.

Smith (1982)
Smith, Bowles, and Li (2000)
Stewartson (1969)
Taylor and Peake (1999)

Turkyilmazaglu, Gajjar, and Ruban (1999)
Woodley and Peake (1997)
Zabusky and Deem (1971)

64

5.5. Further Reading

y.

A
m

pl
itu

de

P
ha

se
-10 -8 -6 -4 -2 0 2 4 6 8 10

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Amplitude varicose
Amplitude sinuous
Phase varicose
Phase sinuous

2π

0

π

3π/2

π/2

Figure 5.11. � Amplitude and phase of the eigenfunction of the streamwise velocity u
in the prescribed mean �ow for the most instable varicose eigenvalue ωr = 4.3788 · 10−2,
ωi = 6.4259·10−3 and the associated sinuous eigenvalue ωr = 3.5888·10−2, ωi = 6.3778·10−4

at αr = 6 · 10−2, Re = 1000, Q = 0.6.

65

5.5. Further Reading

Simulated Prescribed
Varicose Sinuous Varicose Sinuous

αr ωr ωi ωr ωi αr ωr ωi ωr ωi

·102 ·102 ·103 ·102 ·103 ·102 ·102 ·103 ·102 ·103

0.1 0.100 0.041 0.000 0.000 0.1 0.038 0.036 0.000 0.000
1 0.918 1.596 0.449 0.755 1 0.923 1.476 0.429 0.764
2 1.689 3.618 0.987 1.486 2 1.690 3.623 0.942 1.564
3 2.384 5.167 1.579 1.730 3 2.384 5.259 1.511 1.997
4 3.023 6.125 2.183 1.411 4 3.019 6.405 2.098 1.981
5 3.617 6.503 2.777 0.587 5 3.609 7.065 2.688 1.536
6 4.169 6.356 3.349 -0.062 6 4.164 7.276 3.269 0.705
7 4.680 5.770 3.903 -0.211 7 4.686 7.086 3.836 -0.470
8 5.149 4.846 8 5.177 6.546
9 5.576 3.713 9 5.638 5.708
10 5.968 2.494 10 6.070 4.626
11 6.334 1.206 11 6.472 3.352
12 6.673 -0.148 12 6.843 1.943
13 6.980 -1.516 13 7.185 0.454
14 7.241 -2.593 14 7.497 -1.053

Ratio prescribed/simulated Delta prescribed-simulated
Varicose Sinuous Varicose Sinuous

αr ωr ωi ωr ωi αr ωr ωi ωr ωi

·102 ·102 ·103 ·102 ·103 ·102 ·102 ·103 ·102 ·103

0.1 0.38 0.88 1.00 1.00 0.1 -0.06 -0.01 0.00 0.00
1 1.01 0.92 0.96 1.01 1 0.01 -0.12 -0.02 0.01
2 1.00 1.00 0.95 1.05 2 0.00 0.01 -0.05 0.08
3 1.00 1.02 0.96 1.15 3 0.00 0.09 -0.07 0.27
4 1.00 1.05 0.96 1.40 4 0.00 0.28 -0.09 0.57
5 1.00 1.09 0.97 2.62 5 -0.01 0.56 -0.09 0.95
6 1.00 1.14 0.98 -11.37 6 0.00 0.92 -0.08 0.77
7 1.00 1.23 0.98 2.23 7 0.01 1.32 -0.07 -0.26
8 1.01 1.35 8 0.03 1.70
9 1.01 1.54 9 0.06 2.00
10 1.02 1.85 10 0.10 2.13
11 1.02 2.78 11 0.14 2.15
12 1.03 -13.13 12 0.17 2.09
13 1.03 -0.30 13 0.20 1.97
14 1.04 0.41 14 0.26 1.54

Table 5.1. � Eigenvalues of the simulated and the prescribed (Q = 0.6799) �ow at Re =
500 and corresponding ratios and di�erences.

66

5.5. Further Reading

αr n Q ωr ωi γ γn−1

γn

Q1−Q2

Q2−Q3

·102 ·102 ·103 ·103

3 1 0.6 2.456 4.634

1.140

2 0.6799 2.384 5.259 0.953
3 0.75 2.320 5.800 0.838 1.138

6 1 0.6 4.380 6.420
2 0.6799 4.164 7.276 2.323
3 0.75 3.974 8.028 2.043 1.137

9 1 0.6 6.034 5.035
2 0.6799 5.638 5.708 4.017
3 0.75 5.292 6.300 3.510 1.144

12 1 0.6 7.450 1.710
2 0.6799 6.843 1.943 6.074
3 0.75 6.311 2.147 5.324 1.141

Table 5.2. � Selected instable eigenvalues of the prescribed �ow at Re = 500 and dif-
ferent pro�le veloctiy ratios � γ is the Euclidean distance of the eigenvalues: γ =√

(ωr n−1 − ωr n)2 + (ωi n−1 − ωi n)2.

67

5.5. Further Reading

y
-10 -8 -6 -4 -2 0 2 4 6 8 10

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Amplitude Re=1000
Amplitude Re=500
Phase Re=1000
Phase Re=500

3π

4π

0

2π

π

P
ha

se

A
m

pl
itu

de

Figure 5.12. � Amplitude and phase of the eigenfunction of the streamwise velocity u in
the prescribed mean �ow at Q = 0.75, αr = 1 · 10−2 and two Reynolds numbers for the

respective varicose eigenvalues.

68

6. Conclusion and Outlook

It could be shown that the PCNAVWAKEBD code in principle can be used to carry out the
investigation of disturbance evolution that was the scope of this thesis. The numerical
instability that occurred when introducing the perturbations was the major obstacle to
accomplish this and could not be overcome because the code provided is way too complex
to be completely analysed as a by-product. It should be pursued in a separate work as
to where the exact roots of this instability lie � this thesis shed light on some possible
reasons and worked out which parameters could have an in�uence and which not. In
particular, the boundary conditions and the irregular velocity pro�le of U vs. y on the
small scale should be focused on in the future.

Still, for a range of x-stations, the code produces a mean �ow state that can serve as
an input to an eigenvalue-oriented stability analysis. Using this and the analytic sech2-
type prescribed mean �ow, stability properties of the parallel near-wake �ow could be
examined thoroughly. The main �ndings were that

� simulated and prescribed mean �ow have nearly identical eigenvalues for lower
wavenumbers

� eigenvalues of simulated and prescribed mean �ow for higher wavenumbers seem
to correlate systematically

� there is no Reynolds number dependence of the eigenvalues for a constant velocity
pro�le

� there is no Mach number dependence of the eigenvalues in the range of Ma =
0.001 . . . 0.1

� there is a linear relation between the locations of the eigenvalues and the velocity
pro�le ratio.

When the direct numerical simulation will be available and after translating the tem-
poral stability analysis done here into the spatial analysis, then the next steps to bring
the investigation of disturbance evolution in the wake of a �at plate further will be to
make comparisons between the results from simulation and from eigenvalue solving. For
this, a comprehensive basis was established with this work.

69

Part III.

Résumé

70

Résumé

The investigation of the disturbance evolution in the near-wake behind a �at plate is
approached via two di�erent ways in this thesis. The direct numerical simulation of the
�ow, subject to speci�ed perturbations, is one method. Yet, this method could not be
brought to an end because the PCNAVWAKEBD code available for this simulation could not
be made to run entirely stable. The second technique is to solve the Orr-Sommerfeld
equation for both a wake �ow obtained from numerical simulation and a wake �ow de�ned
by an analytical function of the sech2-type.

The principal outline of this approach in this thesis is the following:

After presenting the basic �ow properties, the governing equations for the �ow and
basics of �uid �ow stability, the numerical approach and the solution scheme of the
PCNAVWAKEBD code are brie�y reviewed. Furthermore, changes and extensions to this
code as well as separate programmes written for post-processing the data obtained from
running PCNAVWAKEBD are presented.

Subsequently it is shown under which settings the simulations were actually carried out
to support the search for the root of the arti�cial instability. Additionally, a method how
the wavenumber of the perturbation could have been extracted from the �ow is presented,
together with re-dimensionalisations that give an impression of what the physical values
of the results would be.

The basic state without introduction of disturbances could be simulated without nu-
merical instabilities and thus can be used to examine the quality and credibility of the
�ow the PCNAVWAKEBD code produces. This is done by comparing the numerical results
with what asymptotical theory (triple-deck theory, which is reviewed in short) predicts
for the delicate region around the trailing edge of the �at plate. The accordance of results
from these two sources shows to be generally satisfactory.

Finally, the approach to solving the eigenvalue problem for the two basic �ow types
using the programme LINSTAB is outlined and some additional �ndings about the sim-
ulated mean �ow are given. The results of the eigenvalue solving are presented, the
stability of the two wake �ow types is compared and dependence of the stability proper-
ties from several parameters is discussed. Foremost it was found that there is a linear
relationship between the pro�le velocity ratio and the location of an eigenvalue for a
given wavenumber.

71

Bibliography

Babucke, A. (n.d.). Lineare Stabilitätstheorie & Matrixlöser. http://www.iag.uni-
stuttgart.de/people/andreas.babucke/linstab.html. (accessed: 17/05/2007)

Chomaz, J.-M. (2003). Fully nonlinear dynamics of parallel wakes. J. Fluid Mech., 495,
57-75.

Crawford, D. (2004). gnuplot � an interactive plotting program (Software manual).
Criminale, W. O., Jackson, T. L., & Joslin, R. D. (2003). Theory and computation in

hydrodynamic stability. Cambridge: University Press.
Davies, C. (2005). Numerical simulation of boundary-layer disturbance evolution. Philo-

sophical Transactions of The Royal Society A, 363, 1109-1118.
Davies, C., & Carpenter, P. W. (2001). A novel velocity-vorticity formulation of the

navier-stokes equations with applications to boundary layer disturbance evolutions.
Journal of Computational Physics, 172, 119-165.

Delbende, I., & Chomaz, J.-M. (1998). Nonlinear convective/absolute instabilities in
parallel two-dimensional wakes. Physics of Fluids, 10 (11), 2724-2736.

Dratler, D. I., & Fasel, H. F. (1996). Spatial evolution of a monochromatically forced
�at-plate wake. AIAA Journal, 34 (11), 2299-2305.

Drazin, P. G. (2002). Introduction to hydrodynamic stability. Cambridge University
Press.

Fasel, H., Rist, U., & Konzelmann, U. (1990). Numerical investigation of the three-
dimensional development in boundary-layer transition. AIAA Journal, 28 (1), 29-
37.

Ferziger, J. H., & Peri¢, M. (2002). Computational methods for �uid dynamics (3 ed.).
Berlin Heidelberg: Springer.

Goldstein, S. (1930). Proc. Camb. phil. Soc., 26, 1.
Hannemann, K., & Oertel, H. (1989). Numerical simulation of the absolutely and

convectively unstable wake. J. Fluid Mech., 199, 55-88.
Heaney, C. (2007). Numerical simulation of wavepackets in a transitional boundary layer.

Unpublished doctoral dissertation, Cardi� University School of Mathematics.
Huerre, P. (2002). Perspectives in �uid dynamics. In G. K. Batchelor, H. K. Mo�att, &

M. G. Worster (Eds.), (2nd ed., p. 159-229). Cambridge University Press.
Huerre, P., & Rossi, M. (1998). Hydrodynamics and nonlinear instabilities. In C. Go-

drèche & P. Manneville (Eds.), (p. 81-294). Cambridge University Press.
Jobe, C. E., & Burggraf, O. R. (1974). The numerical solution of the asymptotic

equations of trailing edge �ow. Proc. R. Soc. Lond. A., 340, 91-111.

72

Kloker, M., Konzelmann, U., & Fasel, H. (1993, April). Out�ow boundary conditions
for spatial navier-stokes simulations of transition boundary layers. AIAA Journal,
31 (4), 620-628.

Maekawa, H., Masour, N. N., & Buell, J. C. (1992). Instability mode interactions in a
spatially developing plane wake. J. Fluid Mech., 235, 223-254.

Mattingly, G. E., & Criminale, W. O. (1972). The stability of an incompressible two-
dimensional wake. J. Fluid Mech., 51(2), 233-272.

Messiter, A. F. (1970). SIAM J. appl. Math., 90, 625.
Monkewitz, P. A. (1988). The absolute and convective nature of instability in two-

dimensional wakes at low reynolds numbers. Phys. Fluids, 31 (5), 999-1006.
Oertel, H. (1990). Wakes behind blunt bodies. Annu. Ref. Fluid Mech., 22, 539-64.
Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlg.

III. Intern. Math. Kongr. Heidelberg (p. 484-491).
Rist, U., & Fasel, H. (1995). Direct numerical simulation of controlled transition in a

�at-plate boundary layer. J. Fluid Mech., 298, 211-248.
Rothmayer, A. P., & Smith, F. T. (1998). High reynolds number asymptotic theories.

In R. W. Johnson (Ed.), (p. 23-1-25-25). CRC Press.
Schlichting, H., & Gersten, K. (2006). Grenzschicht-Theorie (10 ed.). Berlin, Heidelberg:

Springer.
Schmid, P. J., & Henningson, D. S. (2001). Stability and transition in shear �ows. New

York: Springer.
Smith, F. T. (1982). On the high reynolds number theory of laminar �ows. Journal of

Applied Mathematics, 28, 207-281.
Smith, F. T., Bowles, R. G. A., & Li, L. (2000). Nonlinear e�ects in absolute and

convective insta-bilities of a near-wake. Eur. J. Mech. B - Fluids, 19, 173-211.
Stewartson, K. (1969). Mathematica, 16, 106.
Taylor, M. J., & Peake, N. (1999). A note on the absolute instability of wakes. Eur. J.

Mech. B/Fluids, 18 (4), 573-579.
Turkyilmazaglu, M., Gajjar, J. S. B., & Ruban, A. I. (1999). The absolute instability

of thin wakes in an incompressible/compressible �uid. Theoret. Comput. Fluid
Dynamics, 13, 91-114.

Woodley, B. M., & Peake, N. (1997). Global linear stability analysis of thin aerofoil
wakes. J. Fluid Mech., 339, 239-260.

Zabusky, N. J., & Deem, G. S. (1971). Dynamical evolution of two-dimensional unstable
shear �ows. J. Fluid Mech., 47, 353-379.

73

Appendix

A.1. PRESCMF Module Code

1 subroutine PRESCMF(UB,D2UB ,VBC ,DUBW ,LY,YPTS ,LETA ,NPROF ,LAMBDA

)

2

3 integer YM1 ,YPTS

4 parameter (YM1 =64)

5 double precision UB(YM1),D2UB(YM1),VBC(YM1),DUBW

6 double precision LETA ,LY,DISP

7 double precision PI,Y(YM1),ZETA(YM1)

8 integer I,J

9

10 double precision LAMBDA

11 integer NPROF

12 double precision T1,T3,T4,T5,T7,T8,T9,T13 ,T15 ,T16 ,T17 ,T19 ,T20

,T22 ,T23 ,T27 ,T28

13

14 DISP =1.d0

15 LY=LETA/DISP

16

17 PI=4.d0*datan (1.d0)

18

19 do J=1,YPTS

20 VBC(J)=0.d0

21 end do

22

23 DUBW =0.d0

24

25 C For the function U(Y)=1-LAMBDA *(sech(Y))**2

26 do I=1,YPTS

27 ZETA(I) = dcos(PI*(I-1.d0)/(2.d0*YPTS))

28 Y(I) = LETA *(1.d0/(ZETA(I)) -1.d0)

29 UB(I) = 1.d0-LAMBDA *(2.d0/(dexp(Y(I))+dexp(-Y(I))))**2

A1

A.1. PRESCMF Module Code

30 C = 1-LAMBDA *(sech(Y))**2

31 C DUB(I) = 2.d0*LAMBDA *(2.d0/(dexp(Y(I))+dexp(-Y(I))))**2*

dtanh(Y(I))

32 C = 2* LAMBDA *(sech(Y))**2* tanh(Y)

33 D2UB(I) = 2.d0*LAMBDA *(-2.d0*(2.d0/(dexp(Y(I))+dexp(-Y(I))))

2*(dtanh(Y(I)))2+

34 & (2.d0/(dexp(Y(I))+dexp(-Y(I))))**2*(1.d0 -(dtanh(Y(I)))**2))

35 C = 2* LAMBDA *(-2*(sech(Y))**2*(tanh(Y))**2+(sech(Y))

2*(1 -(tanh(Y))2))

36 end do

37

38 CC For the function U(Y)=(1- LAMBDA +2* LAMBDA *(1+(sinh(Y*arsinh

(1)))**(2* NPROF))**(-1.d0))

39 C do I=1,YPTS

40 C ZETA(I) = dcos(PI*(I-1.d0)/(2.d0*YPTS))

41 C Y(I) = LETA *(1.d0/(ZETA(I)) -1.d0)

42 CC UB(I) = (1-LAMBDA +2* LAMBDA *(1+(dsinh(Y(I)*DLOG (1.d0+dsqrt

(2.d0))))**(2* NPROF))**(-1.d0))/2.d0

43 C UB(I) = (1-LAMBDA +2* LAMBDA *(1+(dsinh(Y(I)*DLOG (1.d0+dsqrt

(2.d0))))**(2* NPROF))**(-1.d0))

44 C end do

45 C

46 C do I=1,(YPTS -1)

47 C if (I .eq. 1) then

48 C if (NPROF .eq. 1) then

49 C D2UB(I) = -0.155363880 d0*LAMBDA

50 C else

51 C D2UB(I) = 0.d0

52 C end if

53 C else

54 C T1 = dsqrt (2.d0)

55 C T3 = dlog (1.d0+T1)

56 C T4 = Y(I)*T3

57 C T5 = dsinh(T4)

58 C T7 = T5**(2* NPROF)

59 C T8 = 1.d0+T7

60 C T9 = T8**2

61 C T13 = T7**2

62 C T15 = NPROF **2

63 C T16 = dcosh(T4)

64 C T17 = T16**2

65 C T19 = T3**2

66 C T20 = T5**2

A2

A.2. Unix Shell Script for Launching Condor Grid Computing Jobs

67 C T22 = T19/T20

68 C T23 = T15*T17*T22

69 C T27 = LAMBDA/T9

70 C T28 = T27*T7

71 CC D2UB(I) = 0.8d0*LAMBDA/T9/T8*T13*T23 -0.4d0*T28*T23 -0.2d0*

T27*T7*NPROF*T19 +0.2d0*T28*NPROF*T17*T22

72 C end if

73 C end do

74 C D2UB(YPTS) = 0.d0

75

76 CC For the function U(Y)=1

77 C do I=1,YPTS

78 C ZETA(I) = dcos(PI*(I-1.d0)/(2.d0*YPTS))

79 C Y(I) = LETA *(1.d0/(ZETA(I)) -1.d0)

80 C UB(I) = 1.d0

81 C D2UB(I) = 0.d0

82 C end do

83

84 CC For the function U(Y)=Y*A

85 C do I=1,YPTS

86 C ZETA(I) = dcos(PI*(I-1.d0)/(2.d0*YPTS))

87 C Y(I) = LETA *(1.d0/(ZETA(I)) -1.d0)

88 C if (Y(I).lt.1.d0) then

89 C UB(I) = 1.d0*Y(I)

90 C else

91 C UB(I) = 1.d0

92 C end if

93 C D2UB(I) = 0.d0

94 C end do

95

96 end subroutine

A.2. Unix Shell Script for Launching Condor Grid Computing
Jobs

A.2.1. batchcmd.sh

1 rm condorbatch

2 echo "universe = vanilla" >> condorbatch

3 echo "getenv = true" >> condorbatch

4 echo "log = log.log" >> condorbatch

5 echo "error = error.log" >> condorbatch

A3

A.2. Unix Shell Script for Launching Condor Grid Computing Jobs

6 echo "executable = pcnavwakebdfs" >> condorbatch

7 echo "WhenToTransferOutput = ON_EXIT" >> condorbatch

8 for R in 100. 1000.

9 do

10 for AF in 1.d-10

11 do

12 for w in 0.001 0.005 0.01 0.05 0.1 0.5 1.0 5.0 10.

13 do

14 for LXF in 5.0

15 do

16 for Q in 0.6

17 do

18 for alph in 0.05

19 do

20 for NY in 64

21 do

22 for DX in 0.5

23 do

24 for DT in 0.125

25 do

26 for NITS in 5

27 do

28 for DISP in 1.0

29 do

30 mkdir ${R}_${w}_${Q}_${LXF}_${AF}_${DX}_${DT}_${NITS}

31 cp inputbatch.dat inputtemp.dat

32 sed -e "s:@R@:${R}:" inputtemp.dat > inputtemp1.dat

33 sed -e "s:@NY@:${NY}:" inputtemp1.dat > inputtemp2.dat

34 sed -e "s:@alph@:${alph}:" inputtemp2.dat > inputtemp3.dat

35 sed -e "s:@DX@:${DX}:" inputtemp3.dat > inputtemp4.dat

36 sed -e "s:@DT@:${DT}:" inputtemp4.dat > inputtemp5.dat

37 sed -e "s:@NITS@:${NITS}:" inputtemp5.dat > inputtemp6.dat

38 sed -e "s:@AF@:${AF}:" inputtemp6.dat > inputtemp7.dat

39 sed -e "s:@w@:${w}:" inputtemp7.dat > inputtemp8.dat

40 sed -e "s:@LXF@:${LXF}:" inputtemp8.dat > inputtemp9.dat

41 sed -e "s:@Q@:${Q}:" inputtemp9.dat > inputtemp10.dat

42 sed -e "s:@DISP@:${DISP}:" inputtemp10.dat > inputtemp11.dat

43 cp inputtemp11.dat ./${R}_${w}_${Q}_${LXF}_${AF}_${DX}_${DT}

_${NITS}/input.dat

44 echo "initialdir = ${R}_${w}_${Q}_${LXF}_${AF}_${DX}_${DT}_${

NITS}" >> condorbatch

45 echo "input = input.dat" >> condorbatch

46 echo "queue" >> condorbatch

A4

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

47 done

48 done

49 done

50 done

51 done

52 done

53 done

54 done

55 done

56 done

57 done

58 rm inputtemp *.dat

A.2.2. inputbatch.dat

1 @R@

2 0.

3 (@alph@ ,0)

4 @DX@

5 @DT@

6 800.

7 1000.

8 1000.

9 @NITS@

10 @NY@

11 4.

12 300.

13 @AF@

14 @w@

15 @LXF@

16 1

17 1

18 0

19 1

20 1

21 @Q@

22 @DISP@

A.3. Miscellaneous Changes to the PCNAVWAKE Programme
Code

A.3.1. outputall Module Code

A5

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

1 subroutine outputall(TT,VEL ,TVEL ,TTVEL ,VOR ,DX,DT,R,XEND ,

LMAP ,NY,SU,TP)

2 C output physical data fields

3 integer N,XG,NY,XEND ,NY2

4 parameter (N=64,XG =2048)

5

6 double complex VEL(N,XG),TVEL(N,XG),TTVEL(XG),VOR(N,XG)

7 double complex UPTS(N,XG),VPTS(N,XG),VORPTS(N,XG),PPTS(N,XG

)

8 double precision US(N,XG),VS(N,XG),VORS(N,XG)

9 double complex UTCOLL(N,XG),D2UTCOLL(N,XG)

10 double precision UCR ,VCR ,VORCR

11 double precision UCI ,VCI ,VORCI

12 double precision UCT ,VCT ,VORCT

13 double precision UCRP ,VCRP ,VORCRP

14 double precision UCIP ,VCIP ,VORCIP

15 double precision UCTP ,VCTP ,VORCTP

16 double precision PCR ,PCI ,PCT

17 double precision TT,DX,DT,R,LMAP

18 double complex IVEL(XG),DIVEL(XG),IVOR(XG),IVELS(XG),IVORS(

XG)

19 double precision YPOS(N),PI,YREAL(N)

20 double precision VI,VR,WI,WR

21

22 integer XJ,YJ

23 logical SU,TP

24

25 double precision XPOS ,DU

26 double complex UCENT(XG)

27 double precision A,B

28

29 open (1,file='collinit.dat ')

30 do XJ=1,XEND

31 read (1,*)

32 do YJ=1,NY

33 read (1,*) A,B,US(YJ,XJ),VS(YJ,XJ),VORS(YJ,XJ)

34 end do

35 end do

36 close (1)

37

38 C calculate collocation values

39 call ucollptsfft(VEL ,VOR ,UPTS ,DX,XEND ,LMAP ,NY)

40 call vcollptsfft(VEL ,VPTS ,XEND ,NY)

A6

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

41 call vcollptsfft(VOR ,VORPTS ,XEND ,NY)

42

43 call utotcoll (VEL ,VOR ,UTCOLL ,D2UTCOLL ,DX,XEND ,LMAP ,

NY)

44

45 call nlpcollptsfft (VEL ,TVEL ,TTVEL ,VOR ,PPTS ,DX,DT,R,

XEND ,LMAP ,NY)

46

47

48 PI=4.d0*datan (1.D0)

49

50 101 format(A)

51 100 format(F6.1,' ',F18.15,' ',F19.15,' ',E22.15,' ',

E22.15,' ',E22.15,' ',E22.15,' ',E22.15,' ',E22.15,'

',E22.15,' '

52 & , E22.15,' ',E22.15,' ',E22.15,' ',E22.15,' ',E22

.15,' ',E22.15,' ',E22 .15)

53

54 do YJ=1,NY

55 YPOS(YJ)=cos((YJ -1)*PI/(2*NY))

56 YREAL(YJ)=LMAP *(1.d0/YPOS(YJ) -1.d0)

57 end do

58

59 C and print them out

60 open (1,file='sym -asym.dat ')

61 if(TP) then

62 write (1 ,101) 'VARIABLES = "x","1-zeta","y","u_sym","

v_sym","vor_sym","u_asym","v_asym","vor_asym","

u_p_sym","v_p_sym",

63 & "vor_p_sym","u_p_asym","v_p_asym","vor_p_asym","p_sym"

,"p_asym"'

64 write (1,*) 'ZONE I=',NY,' J=',XEND

65 else

66 write (1 ,101) '#VARIABLES = "x","1-zeta","y","u_sym",

"v_sym","vor_sym","u_asym","v_asym","vor_asym","

u_p_sym","v_p_sym",

67 & "vor_p_sym","u_p_asym","v_p_asym","vor_p_asym","p_sym"

,"p_asym"'

68 write (1,*) '#ZONE I=',NY,' J=',XEND

69 write (1,*)

70 end if

71

72 do XJ=1,XEND

A7

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

73 XPOS=(XJ -1)*DX

74 do YJ=1,NY

75 UCR=dreal(UPTS(YJ,XJ))

76 VCR=dreal(VPTS(YJ,XJ))

77 VORCR=dreal(VORPTS(YJ,XJ))

78 UCI=dimag(UPTS(YJ,XJ))

79 VCI=dimag(VPTS(YJ,XJ))

80 VORCI=dimag(VORPTS(YJ,XJ))

81 UCRP=dreal(UPTS(YJ,XJ))-US(YJ,XJ)

82 VCRP=dreal(VPTS(YJ,XJ))-VS(YJ,XJ)

83 VORCRP=dreal(VORPTS(YJ,XJ))-VORS(YJ,XJ)

84 UCIP=dimag(UPTS(YJ,XJ))-US(YJ,XJ)

85 VCIP=dimag(VPTS(YJ,XJ))-VS(YJ,XJ)

86 VORCIP=dimag(VORPTS(YJ,XJ))-VORS(YJ,XJ)

87 PCR=dreal(PPTS(YJ,XJ))

88 PCI=dimag(PPTS(YJ,XJ))

89

90 write (1 ,100) real(XPOS) ,1.d0-real(YPOS(YJ)),YREAL(YJ),real(

UCR),real(VCR),real(VORCR),real(UCI),real(VCI),real(

VORCI),real(UCRP),

91 & real(VCRP),real(VORCRP),real(UCIP),real(VCIP),real(

VORCIP),

92 & real(PCR),real(PCI)

93 end do

94 end do

95 close (1)

96

97 C print out total field

98 open (1,file='total.dat ')

99 NY2=2*NY

100 if(TP) then

101 write (1 ,101) 'VARIABLES = "XPOS","1-zeta","y","u_t",

"v_t","vor_t","u_p_t","v_p_t","vor_p_t","u_tot","

d2u_tot","p_t"'

102 write (1,*) 'ZONE I=',NY2 ,' J=',XEND

103 else

104 write (1 ,101) '#VARIABLES = "XPOS","1-zeta","y","u_t"

,"v_t","vor_t","u_p_t","v_p_t","vor_p_t","u_tot",

"d2u_tot","p_t"'

105 write (1,*) '#ZONE I=',NY2 ,' J=',XEND

106 write (1,*)

107 end if

108

A8

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

109 do XJ=1,XEND

110 XPOS=(XJ -1)*DX

111 do YJ=NY ,1,-1

112 UCT=dreal(UPTS(YJ,XJ))+dimag(UPTS(YJ,XJ))

113 VCT=dreal(VPTS(YJ,XJ))+dimag(VPTS(YJ,XJ))

114 VORCT=dreal(VORPTS(YJ,XJ))+dimag(VORPTS(YJ,XJ))

115

116 UCTP=dreal(UPTS(YJ,XJ))+dimag(UPTS(YJ,XJ))-US(YJ,XJ

)

117 VCTP=dreal(VPTS(YJ,XJ))+dimag(VPTS(YJ,XJ))-VS(YJ,XJ

)

118 VORCTP=dreal(VORPTS(YJ,XJ))+dimag(VORPTS(YJ,XJ))-

VORS(YJ,XJ)

119

120 PCT=dreal(PPTS(YJ,XJ))+dimag(PPTS(YJ,XJ))

121 write (1 ,100) real(XPOS) ,1.d0-real(YPOS(YJ)),YREAL(

YJ),real(UCT),real(VCT),real(VORCT),real(UCTP),

real(VCTP),real(VORCTP),

122 & real(dreal(UTCOLL(YJ,XJ))),real(dreal(D2UTCOLL(YJ,XJ))

),real(PCT)

123 end do

124 do YJ=1,NY

125 UCT=dreal(UPTS(YJ,XJ))-dimag(UPTS(YJ,XJ))

126 VCT=-dreal(VPTS(YJ,XJ))+dimag(VPTS(YJ,XJ))

127 VORCT=-dreal(VORPTS(YJ,XJ))+dimag(VORPTS(YJ,XJ))

128

129 UCTP=dreal(UPTS(YJ,XJ))-dimag(UPTS(YJ,XJ))-US(YJ,XJ

)

130 VCTP=-dreal(VPTS(YJ,XJ))+dimag(VPTS(YJ,XJ))+VS(YJ,

XJ)

131 VORCTP=-dreal(VORPTS(YJ,XJ))+dimag(VORPTS(YJ,XJ))+

VORS(YJ,XJ)

132

133 PCT=dreal(PPTS(YJ,XJ))-dimag(PPTS(YJ,XJ))

134 write (1 ,100) real(XPOS),real(YPOS(YJ)) -1.d0,-YREAL(

YJ),real(UCT),real(VCT),real(VORCT),real(UCTP),

real(VCTP),real(VORCTP),

135 & real(dreal(UTCOLL(YJ,XJ))),real(dreal(D2UTCOLL(YJ,XJ))

),real(PCT)

136 end do

137 end do

138 close (1)

139

A9

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

140 111 format(A)

141 110 format(F6.1,' ',I3,' ','(',E22.15,',',E22.15,') ','

','(',E22.15,',',E22.15,') ')

142

143 C print out chebvectors for primary variables

144 open (1,file='cheb.dat ')

145 write (1,*) '#TIME ',TT

146 write (1,*) '#CHEB COEFTS '

147 write (1,*) '#xpos , yj, v, vor '

148 do XJ=1,XEND

149 write (1,*)

150 XPOS=(XJ -1)*DX

151 do YJ=1,NY

152 write (1 ,110) real(XPOS),YJ,VEL(YJ,XJ),VOR(YJ,XJ)

153 end do

154 end do

155 close (1)

156

157 121 format(A)

158 120 format(F6.1,' ',E22.15,' ',E22.15,' ',E22.15,' ',

E22 .15)

159

160 C wall values

161 open (1,file='wallvals.dat ')

162 if(TP) then

163 write (1 ,121) 'VARIABLES = "XPOS","u_centcd ","u","v"

,"vor"'

164 write (1,*) 'ZONE I=',XEND

165 else

166 write (1,*) '#TIME ',TT

167 write (1 ,121) '#VARIABLES = "XPOS","u_centcd ","u","v

","vor"'

168 write (1,*) '#ZONE I=',XEND

169 end if

170

171 C checks the vorticity boundary condition

172 call profinteg(VOR ,IVOR ,XEND ,NY)

173 call profinteg(VEL ,IVEL ,XEND ,NY)

174 call sderiv(IVEL ,DIVEL ,DX,XEND)

175

176 do XJ=1,XEND

177 UCENT(XJ)=-(IVOR(XJ)+DIVEL(XJ))

178 end do

A10

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

179

180 do XJ=1,XEND

181 XPOS=(XJ -1)*DX

182 write (1 ,120) real(XPOS),real(dreal(UCENT(XJ))),real(

dreal(UPTS(1,XJ))),real(dreal(VPTS(1,XJ))),real(

dreal(VORPTS(1,XJ)))

183 end do

184

185 write (1,*)

186 if(TP) then

187 write (1 ,121) 'VARIABLES = "XPOS","u_centcd ","u","v"

,"vor"'

188 write (1,*) 'ZONE I=',XEND

189 else

190 write (1,*) '#TIME ',TT

191 write (1 ,121) '#VARIABLES = "XPOS","u_centcd ","u","v

","vor"'

192 write (1,*) '#ZONE I=',XEND

193 end if

194 do XJ=1,XEND

195 XPOS=(XJ -1)*DX

196 write (1 ,120) real(XPOS),real(dimag(UCENT(XJ))),real(

dimag(UPTS(1,XJ))),real(dimag(VPTS(1,XJ))),real(

dimag(VORPTS(1,XJ)))

197 end do

198 close (1)

199

200 end subroutine

201

202 subroutine outputcent(TT,VEL ,TVEL ,TTVEL ,VOR ,DX,DT,R,XEND ,

LMAP ,NY,SU,TP,XAMP ,ABORT)

203 C output physical data fields

204

205 integer N,XG,NY,XEND ,NY2

206 parameter (N=64,XG =2048)

207

208 double complex VEL(N,XG),TVEL(N,XG),TTVEL(XG),VOR(N,XG)

209 double complex UPTS(N,XG),VPTS(N,XG),VORPTS(N,XG),PPTS(N,XG

)

210 double precision US(N,XG),VS(N,XG),VORS(N,XG)

211 double complex UTCOLL(N,XG),D2UTCOLL(N,XG)

212 double precision UCR ,VCR ,VORCR

213 double precision UCI ,VCI ,VORCI

A11

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

214 double precision UCT ,VCT ,VORCT

215 double precision UCRP ,VCRP ,VORCRP

216 double precision UCIP ,VCIP ,VORCIP

217 double precision UCTP ,VCTP ,VORCTP

218 double precision PCR ,PCI ,PCT

219 double precision TT,DX,DT,R,LMAP

220 double complex IVEL(XG),DIVEL(XG),IVOR(XG),IVELS(XG),IVORS(

XG)

221 double precision YPOS(N),PI

222 double precision VI,VR,WI,WR

223

224 integer XJ,YJ

225 logical SU,TP,ABORT

226

227 double precision XPOS ,DU

228 double complex UCENT(XG)

229 double precision A,B

230 double precision XAMP(XG)

231 double precision XAMPC

232

233 integer TTI

234 character(LEN =14) fname

235

236 open (1,file='collinit.dat ')

237 do XJ=1,XEND

238 read (1,*)

239 do YJ=1,NY

240 read (1,*) A,B,US(YJ,XJ),VS(YJ,XJ),VORS(YJ,XJ)

241 end do

242 end do

243 close (1)

244

245 C calculate collocation values

246 call ucollptsfft(VEL ,VOR ,UPTS ,DX,XEND ,LMAP ,NY)

247 call vcollptsfft(VEL ,VPTS ,XEND ,NY)

248 call vcollptsfft(VOR ,VORPTS ,XEND ,NY)

249

250 PI=4.d0*datan (1.D0)

251

252 131 format(A)

253 130 format(F6.1,' ',E22.15,' ',E22.15,' ',E22.15,' ',

E22.15,' ',E22.15,' ',E22 .15)

254

A12

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

255 do YJ=1,1

256 ypos(YJ)=cos((YJ -1)*PI/(2*NY))

257 end do

258

259 C centre line values

260 TTI=int(TT)

261 fname (1:10)='centvt0000.dat '

262 if ((tt.ge.1).and.(tt.lt.10)) then

263 write(fname (10:10) ,'(I1)') TTI

264 else if ((tt.ge.10).and.(tt.lt.100)) then

265 write(fname (9:10) ,'(I2)') TTI

266 else if ((tt.ge.100).and.(tt.lt .1000)) then

267 write(fname (8:10) ,'(I3)') TTI

268 else if (tt.ge .1000) then

269 write(fname (7:10) ,'(I4)') TTI

270 end if

271 write(fname (11:14) ,'(A4)') '.dat '

272 open (1,file=fname)

273

274 if(TP) then

275 write (1 ,131) 'VARIABLES = "XPOS","|u_t|","|v_t|","|

vor_t|","u_t","v_t","vor_t"'

276 write (1,*) 'ZONE I=',XEND

277 else

278 write (1,*) '#TIME ',TT

279 write (1 ,131) '#VARIABLES = "XPOS","|u_t|","|v_t|","|

vor_t|","u_t","v_t","vor_t"'

280 write (1,*) '#ZONE I=',XEND

281 end if

282

283 do XJ=1,XEND

284 XPOS=(XJ -1)*DX

285 do YJ=1,1

286 if (TTI.eq.0) then

287 UCT=0.d0

288 VCT=0.d0

289 VORCT =0.d0

290

291 UCTP =0.d0

292 VCTP =0.d0

293 VORCTP =0.d0

294

295 PCT=0.d0

A13

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

296 else

297

298 UCT=dreal(UPTS(YJ,XJ))+dimag(UPTS(YJ,XJ))

299 VCT=dreal(VPTS(YJ,XJ))+dimag(VPTS(YJ,XJ))

300 VORCT=dreal(VORPTS(YJ,XJ))+dimag(VORPTS(YJ,XJ))

301

302 end if

303

304 write (1 ,130) real(XPOS),abs(dreal(UCT)),abs(dreal(

VCT)),abs(dreal(VORCT)),real(UCT),real(VCT),real

(VORCT)

305 C Set flag for programme abortion when values get too high

306 if (VORCT.gt.1.d0) ABORT=.true.

307 end do

308 end do

309 write (1,*)

310 close (1)

311 end subroutine

A.3.2. startupparams Module Code

1 subroutine startupparams(R,MFS ,ALPH ,DX,DT,XPTS ,XP,

TPTS ,NITS ,NY,LETA ,XF,AMP ,W,LXF ,IMP ,SU,PF,TP,NPROF

,LAMBDA)

2

3 C routines for reading in flow and discretization parameters

4

5 double precision R,MFS

6 double complex ALPH

7 integer XPTS ,XP,TPTS ,NITS ,NY,N,XG

8 parameter (N=64,XG =2048)

9 double precision DX,DT,LETA

10 double precision XLEN ,XPLATE ,TTIME

11 integer XF,TECPL

12 double precision XFORCE ,AMP ,W,LXF

13 C double precision DX,XFORCE ,AMP ,W,LXF

14 logical IMP ,SU,PF,TP

15 integer FORCETYPE ,STARTTYPE ,FLOWTYPE

16 integer NPROF

17 double precision LAMBDA

18 C double precision DISP

19

20 open (1,file='input.dat ')

A14

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

21 read (1,*) R

22 C read in falk skan parameter

23 read (1,*) MFS

24 read (1,*) ALPH

25 read (1,*) DX

26 read (1,*) DT

27 read (1,*) XLEN

28 XPTS=int(XLEN/DX)+1

29 C read in plate end location

30 read (1,*) XPLATE

31 XP=int(XPLATE/DX)+1

32 read (1,*) TTIME

33 TPTS=int(TTIME/DT)

34 read (1,*) NITS

35 read (1,*) NY

36 read (1,*) LETA

37 C read in forcing location

38 read (1,*) XFORCE

39 XF=int(XFORCE/DX)+1

40 C read in wall forcing amplitude scale

41 read (1,*) AMP

42 C read in forcing frequency

43 read (1,*) W

44 C read in forcing lengthscale parameter

45 read (1,*) LXF

46 C read in forcing type

47 read (1,*) FORCETYPE

48 if (FORCETYPE.eq.1) then

49 IMP=.false.

50 else

51 IMP=.true.

52 end if

53 C read in start -up type

54 read (1,*) STARTTYPE

55 if (STARTTYPE.eq.1) then

56 SU=.false.

57 else

58 SU=.true.

59 end if

60 C read in whether or not parallel flow

61 read (1,*) FLOWTYPE

62 if (FLOWTYPE.eq.1) then

63 PF=.false.

A15

A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code

64 else

65 PF=.true.

66 end if

67 C read in whether Tecplot or Gnuplot compliant output

68 read (1,*) TECPL

69 if (TECPL.eq.1) then

70 TP=.true.

71 else

72 TP=.false.

73 end if

74 read (1,*) NPROF

75 read (1,*) LAMBDA

76 C read (1,*) DISP

77 close (1)

78

79 open (2,file='outputparam.dat ')

80 write (2,*) 'Reynolds number R'

81 write (2,*) R

82 write (2,*) 'fs param '

83 write (2,*) MFS

84 write (2,*) 'Outflow wavenumber '

85 write (2,*) ALPH

86 write (2,*) 'Streamwise stepsize '

87 write (2,*) DX

88 write (2,*) 'Time step '

89 write (2,*) DT

90 write (2,*) 'Streamwise total length '

91 write (2,*) XLEN

92 C there is an extra point beyond the downstream

boundary

93 if (XPTS.gt.XG) write (2,*) 'Too many streamwise

points '

94 write (2,*) 'Plate location '

95 write (2,*) XPLATE

96 write (2,*) 'Total time interval '

97 write (2,*) TTIME

98 write (2,*) 'Number of iterations (streamwise march

and coupling)'

99 write (2,*) NITS

100 write (2,*) 'Chebyshev order '

101 write (2,*) NY

102 if (NY.gt.N) write (2,*) 'Too many chebs '

103 write (2,*) 'Mapping lengthscale '

A16

A.4. Miscellaneous Changes to the PCNAVWAKE Programme Code

104 write (2,*) LETA

105 write (2,*) 'Forcing location '

106 write (2,*) XFORCE

107 write (2,*) 'Amplitude scale '

108 write (2,*) AMP

109 write (2,*) 'Forcing frequency W'

110 write (2,*) W

111 write (2,*) 'Streamwise forcing lengthscale '

112 write (2,*) LXF

113 write (2,*) 'Impulse or periodic forcing '

114 if (IMP) then

115 write (2,*) 'Impulsive excitation '

116 else

117 write (2,*) 'Periodic excitation '

118 end if

119 write (2,*) 'Null or given initial field?'

120 if (SU) then

121 write (2,*) 'Starting from given field '

122 else

123 write (2,*) 'Null start -up'

124 end if

125 write (2,*) 'Parallel flow?'

126 if (PF) then

127 write (2,*) 'Parallel flow '

128 else

129 write (2,*) 'Non -parallel flow '

130 end if

131 write (2,*) 'Tecplot?'

132 if (TP) then

133 write (2,*) 'Tecplot '

134 else

135 write (2,*) 'Gnuplot '

136 end if

137 write (2,*) 'Profile shape parameter N'

138 write (2,*) NPROF

139 write (2,*) 'Velocity ratio parameter '

140 write (2,*) LAMBDA

141 write (2,*) 'Characteristic lenght '

142 C write (2,*) DISP

143 close (2)

144

145 end subroutine

A17

A.4. POSTPROCESSING Programme Code

A.4. POSTPROCESSING Programme Code

1 module SHAREDDATA

2

3 implicit none

4 save

5 character (len=*), parameter :: VERS='2.4'

6 integer :: NITS , NY, NX, XG, XPTS , TPTS , XF, FORCETYPE ,

STARTTYPE , XP, FLOWTYPE , NPROF , TECPL

7 double precision :: LMAP , R, W, DX, DT, XLEN , TTIME , XFORCE ,

AMP , XPLATE , LAMBDA , MFS , LETA , LXF , DISP

8 parameter (XG =2048)

9 double complex :: ALPH

10 logical :: IMPULSE , SU, PF

11

12 integer :: ADDMF , ORIGIN , RESCX , ETAZETASC , PLOT , RESCY ,

RESCUV

13 logical :: AMF , PS, RS, YY, YE, YZ, PL, RY, RU, XS, TP

14 double precision :: RDELTAASIN , XIN , XSCE , YSCE , USCE , VSCE ,

PSCE

15 double precision ,parameter :: DELTAETA =1.21678

16

17 contains

18

19 !

20 !-----------------------------------

21 subroutine CALCSHAREDDATA

22

23

24

25 open (2,file='input.dat ')

26 read (2,*) R

27 read (2,*) MFS

28 read (2,*) ALPH

29 read (2,*) DX

30 read (2,*) DT

31 read (2,*) XLEN

32 read (2,*) XPLATE

33 read (2,*) TTIME

34 read (2,*) NITS

35 read (2,*) NY

36 read (2,*) LETA

A18

A.4. POSTPROCESSING Programme Code

37 read (2,*) XFORCE

38 read (2,*) AMP

39 read (2,*) W

40 read (2,*) LXF

41 read (2,*) FORCETYPE

42 read (2,*) STARTTYPE

43 read (2,*) FLOWTYPE

44 read (2,*) TECPL

45 read (2,*) NPROF

46 read (2,*) LAMBDA

47 close (2)

48

49 XPTS=int(XLEN/DX)+1

50 NX=XPTS

51 TPTS=int(TTIME/DT)

52 XF=int(XFORCE/DX)+1

53 XP=int(XPLATE/DX)+1

54 DISP =1.d0

55 LMAP=LETA/DISP

56

57 RDELTAASIN = R

58 XIN = RDELTAASIN /(2* DELTAETA **2)

59

60

61 if (FORCETYPE.eq.1) then

62 IMPULSE =.false.

63 else

64 IMPULSE =.true.

65 end if

66

67 if (STARTTYPE.eq.1) then

68 SU=.false.

69 else

70 SU=.true.

71 end if

72

73 if (FLOWTYPE.eq.1) then

74 PF=.false.

75 else

76 PF=.true.

77 end if

78 TP=.true.

79

A19

A.4. POSTPROCESSING Programme Code

80 end subroutine CALCSHAREDDATA

81 !-----------------------------------

82 !

83

84 !

85 !-----------------------------------

86 subroutine READPPINPUT

87

88 open(1,file='ppinput.dat ')

89 read (1,*) ADDMF

90 read (1,*) ORIGIN

91 read (1,*) RESCX

92 read (1,*) ETAZETASC

93 read (1,*) PLOT

94 read (1,*) RESCY

95 read (1,*) RESCUV

96 read (1,*) XSCE

97 read (1,*) YSCE

98 read (1,*) USCE

99 read (1,*) VSCE

100 read (1,*) PSCE

101 close (1)

102

103 if (ADDMF.eq.1) then

104 AMF=.true.

105 else

106 AMF=.false.

107 end if

108

109 if (ORIGIN.eq.1) then

110 PS=.true.

111 XS=.false.

112 else

113 PS=.false.

114 if (ORIGIN.eq.2) then

115 XS=.true.

116 else

117 XS=.false.

118 end if

119 end if

120

121 if (RESCX.eq.1) then

122 RS=.true.

A20

A.4. POSTPROCESSING Programme Code

123 else

124 RS=.false.

125 end if

126

127 if (ETAZETASC.eq.1) then

128 YY=.true.

129 YE=.false.

130 YZ=.false.

131 else

132 YY=.false.

133 if (ETAZETASC.eq.2) then

134 YE=.true.

135 YZ=. false.

136 else

137 if (ETAZETASC.eq.3) then

138 YE=.false.

139 YZ=.true.

140 else

141 YE=.false.

142 YZ=.false.

143 end if

144 end if

145 end if

146

147 if (PLOT.eq.1) then

148 PL=.true.

149 else

150 PL=.false.

151 end if

152

153 if (RESCY.eq.1) then

154 RY=.true.

155 else

156 RY=.false.

157 end if

158

159 if (RESCUV.eq.1) then

160 RU=.true.

161 else

162 RU=.false.

163 end if

164

165 end subroutine READPPINPUT

A21

A.4. POSTPROCESSING Programme Code

166 !-----------------------------------

167 !

168

169 end module SHAREDDATA

170 !---

171 !

172

173 !

174 !---

175 program POSTPROCESSING

176

177 use SHAREDDATA

178

179 implicit NONE

180

181 integer :: IY,IX,NSTOP

182 double precision :: XPOS ,YPOS ,U,V,P,XNEW ,ZETA ,Y,ETA ,YNEW ,UNEW

,VNEW ,PNEW ,RDELTAAS ,BUFFER (11)

183 double precision ,dimension (:),allocatable :: UCOLL ,D2UCOLL

184

185 call CALCSHAREDDATA

186 call READPPINPUT

187

188 allocate(UCOLL(NY),D2UCOLL(NY))

189

190 open (1,file='sym -asym.dat ')

191 1 format(F19.14,' ',F18.14,' ',F18.14,' ',F16.14,'

',F16 .14)

192 open (3,file='resc.dat ',status='replace ')

193

194 NSTOP = 50

195 if(TP) then

196 write (3,*)'VARIABLES = "X", "Y", "U", "V", "P"'

197 write (3,*) 'ZONE I= 50 J= 801'

198 else

199 if(AMF) then

200 write (3,*) '#Meanflow overlaid '

201 else

202 write (3,*) '#'

203 end if

204 if(PS) then

205 if(XS) then

206 write (3,*) '#x-origin shifted to LE before and to TE

A22

A.4. POSTPROCESSING Programme Code

after scaling '

207 else

208 write (3,*) '#x-origin shifted to TE after scaling '

209 end if

210 write (3,*) '#x-origin shifted to plate end '

211 else

212 if(XS) then

213 write (3,*) '#x-origin shifted to LE before scaling '

214 else

215 write (3,*) '#'

216 end if

217 write (3,*) '#'

218 end if

219 if(RS) then

220 if(RY) then

221 if(RU) then

222 write (3,*) '#x and y and u (...) Scaled to Re'

223 else

224 write (3,*) '#x and y and - Scaled to Re'

225 end if

226 else

227 if(RU) then

228 write (3,*) '#x and - and u (...) Scaled to Re'

229 else

230 write (3,*) '#x and - and - Scaled to Re'

231 end if

232 end if

233 else

234 if(RY) then

235 if(RU) then

236 write (3,*) '#- and y and u (...) Scaled to Re'

237 else

238 write (3,*) '#- and y and - Scaled to Re'

239 end if

240 else

241 if(RU) then

242 write (3,*) '#- and - and u (...) Scaled to Re'

243 else

244 write (3,*) '#- and - and - Scaled to Re'

245 end if

246 end if

247 end if

248

A23

A.4. POSTPROCESSING Programme Code

249 write (3,*) '#Re', R

250 write (3,*) '#L', LMAP

251 write (3,*) '#XNEW , YNEW , UNEW , VNEW , PNEW '

252 end if

253

254 read (1,*)

255 read (1,*)

256

257 if(AMF) then

258 call readmf(UCOLL ,D2UCOLL)

259 end if

260

261 if(RS.or.RY.or.RU) then

262 if(PF) then

263 RDELTAAS = RDELTAASIN

264 else

265 ! RDELTAAS = RDELTAASIN*DELTAAS/DELTAASIN

266 end if

267 end if

268

269 do IX=1,NX

270 !!!!!!!!

271 ! do IY=1,NY

272 do IY=1,NSTOP

273 read (1,*) XPOS ,BUFFER (1),YPOS ,U,V,BUFFER (2),BUFFER (3),

BUFFER (4),BUFFER (5),BUFFER (6),BUFFER (7),BUFFER (8),

BUFFER (9),BUFFER (10),BUFFER (11),P

274

275 if(AMF) then

276 U = U+UCOLL(IY)

277 end if

278

279 if(YY.or.YE.or.YZ) then

280 ZETA = 1.d0-YPOS

281 else

282 YNEW = YPOS

283 end if

284 if(YY) then

285 Y = LMAP/ZETA -LMAP

286 YNEW = Y

287 end if

288 if(YE) then

289 Y = LMAP/ZETA -LMAP

A24

A.4. POSTPROCESSING Programme Code

290 ETA = DELTAETA*Y

291 YNEW = ETA

292 end if

293 if(YZ) then

294 YNEW = ZETA

295 end if

296

297 XNEW = XPOS

298 if(XS) then

299 XNEW = XNEW+XIN

300 end if

301 if(PS) then

302 XNEW = XNEW -XPLATE

303 end if

304

305 if(RS) then

306 XNEW = XNEW*RDELTAAS **XSCE

307 end if

308 if(RY) then

309 YNEW = YNEW*RDELTAAS **YSCE

310 end if

311 if(RU) then

312 UNEW = U*RDELTAAS **USCE

313 VNEW = V*RDELTAAS **VSCE

314 PNEW = P*RDELTAAS **PSCE

315 else

316 UNEW = U

317 VNEW = V

318 PNEW = P

319 end if

320

321 write (3,1) XNEW ,YNEW ,UNEW ,VNEW ,PNEW

322

323 end do

324

325 do IY=(NSTOP +1),NY

326 read (1,*) XPOS ,BUFFER (1),YPOS ,U,V,BUFFER (2),BUFFER (3),

BUFFER (4),BUFFER (5),BUFFER (6),BUFFER (7),BUFFER (8),

BUFFER (9),BUFFER (10),BUFFER (11),P

327 end do

328

329 write (3,1)

330 end do

A25

A.4. POSTPROCESSING Programme Code

331

332 close (1)

333 close (3)

334

335 if(PL) then

336 call plotsub

337 end if

338

339 write (*,*) 'OK'

340

341 end program POSTPROCESSING

342 !---

343 !

344

345 !

346 !---

347 subroutine SUMUP

348

349 use SHAREDDATA

350

351 implicit none

352

353 open (4,file='sumup.dat ',status='replace ')

354

355 write (4,*) VERS , ' VERS POSTPROCESSING.EXE '

356

357 write (4,*) NITS , ' NITS '

358 write (4,*) NY, ' NY'

359 write (4,*) LMAP , ' LMAP '

360 write (4,*) R, ' R'

361 write (4,*) W, ' W'

362 write (4,*) DX, ' DX'

363 write (4,*) DT, ' DT'

364 write (4,*) XLEN , ' XLEN '

365 write (4,*) TTIME , ' TTIME '

366 write (4,*) ALPH , ' ALPH '

367 write (4,*) XFORCE , ' XFORCE '

368 write (4,*) FORCETYPE , ' FORCETYPE '

369 write (4,*) STARTTYPE , ' STARTTYPE '

370 write (4,*) AMP , ' AMP '

371 write (4,*) FLOWTYPE , ' FLOWTYPE '

372 write (4,*) XPLATE , ' XPLATE '

373

A26

A.4. POSTPROCESSING Programme Code

374 write (4,*) ADDMF , ' ADDMF '

375 write (4,*) ORIGIN , ' ORIGIN '

376 write (4,*) RESCX , ' RESCX '

377 write (4,*) ETAZETASC , ' ETAZETASC '

378 write (4,*) PLOT , ' PLOT '

379 write (4,*) RESCY , ' RESCY '

380 write (4,*) RESCUV , ' RESCUV '

381 write (4,*) XSCE , ' XSCE '

382 write (4,*) YSCE , ' YSCE '

383 write (4,*) USCE , ' USCE '

384 write (4,*) VSCE , ' VSCE '

385 write (4,*) PSCE , ' PSCE '

386

387 close (4)

388

389 end subroutine SUMUP

390 !---

391 !

392

393 !

394 !---

395 subroutine readmf(UCOLLs ,D2UCOLLs)

396

397 use shareddata

398

399 implicit NONE

400

401 integer :: IYs

402 DOUBLE PRECISION :: IDATAs ,UCOLLs(NY),D2UCOLLs(NY)

403

404 open (2,file='meanflow.dat ')

405 do IYs=1,NY

406 read (2,*) IDATAs ,UCOLLs(IYs),D2UCOLLs(IYs)

407 end do

408 close (2)

409

410 end subroutine readmf

411 !---

412 !

413

414 !

415 !---

416 subroutine plotsub

A27

A.5. GATHERING Programme Code

417

418 use shareddata

419

420 implicit NONE

421 !DOUBLE PRECISION :: RMANT

422 integer :: RI, XPLATEI , XFORCEI , AMPI , XLENI , REXP

423 CHARACTER (LEN=*), PARAMETER :: text0 = 'set title "', texta=

 'Re=', textb=', x_plate=', textc=', x_force=', textd=',

amplitude=', textz='"', texte=', x_length='

424

425 XPLATEI = INT(XPLATE)

426 ! XFORCEI = INT(XFORCE)

427 ! AMPI = INT(AMP)

428 XLENI = INT(XLEN)

429 RI = INT(R)

430 ! IF (R < 10000) THEN

431 1 format(A,A,I4,A,I3,A,I3,A)

432 ! ELSE

433 ! RMANT = R/1000

434 ! REXP = INT(R

435 ! 1 FORMAT(A,I6,A,I3,A,I3,A)

436 ! END IF

437

438 open (1,file='title.gns ',status='replace ')

439 write (1,1) text0 , texta , RI, textb , XPLATEI , texte , XLENI ,

textz

440 close (1)

441

442 end subroutine plotsub

443 !---

444 !

A.5. GATHERING Programme Code

1 C

2 C--

3 module SHAREDDATA

4

5 implicit none

6 save

7 integer NITS ,NY,NX,XG,XPTS ,TPTS ,XF,FORCETYPE ,STARTTYPE ,XP

8 integer TPER ,NPROF ,FLOWTYPE ,TECPL

A28

A.5. GATHERING Programme Code

9 double precision LMAP ,R,W,DX,DT,XLEN ,TTIME ,XFORCE ,AMP ,

XPLATE ,MFS ,LETA

10 double precision LAMBDA ,LXF

11 parameter (XG =2048)

12 double complex ALPH

13 logical IMPULSE , SU, PF

14

15 double precision PI

16

17

18

19 INTEGER ADDMF , ORIGIN , RESCX , ETAZETASC , PLOT , RESCY ,

RESCUV

20 LOGICAL AMF , PS, RS, YY, YE, YZ, PL, RY, RU, XS

21 DOUBLE PRECISION RDELTAASIN , XIN , XSCE , YSCE , USCE , VSCE ,

VORSCE

22 DOUBLE PRECISION DELTAETA

23 PARAMETER (DELTAETA =1.21678)

24

25 contains

26 C

27 C-----------------------------------

28 subroutine CALCSHAREDDATA

29

30 OPEN (2,file='input.dat ')

31 READ (2,*) R

32 READ (2,*) MFS

33 READ (2,*) ALPH

34 READ (2,*) DX

35 READ (2,*) DT

36 READ (2,*) XLEN

37 READ (2,*) XPLATE

38 READ (2,*) TTIME

39 READ (2,*) NITS

40 READ (2,*) NY

41 READ (2,*) LETA

42 READ (2,*) XFORCE

43 READ (2,*) AMP

44 READ (2,*) W

45 READ (2,*) LXF

46 READ (2,*) FORCETYPE

47 READ (2,*) STARTTYPE

48 READ (2,*) FLOWTYPE

A29

A.5. GATHERING Programme Code

49 READ (2,*) TECPL

50 READ (2,*) NPROF

51 READ (2,*) LAMBDA

52 CLOSE (2)

53

54 PI=4.d0*datan (1.D0)

55 XPTS=INT(XLEN/DX)+1

56 NX=XPTS

57 TPTS=INT(TTIME/DT)

58 TPER=int ((8.d0*datan (1.d0)/W)/DT)

59 XF=int(XFORCE/DX)+1

60 XP=int(XPLATE/DX)+1

61

62 RDELTAASIN = R

63 XIN = RDELTAASIN /(2* DELTAETA **2)

64

65

66 IF (FORCETYPE.eq.1) THEN

67 IMPULSE =.false.

68 ELSE

69 IMPULSE =.true.

70 END IF

71

72 IF (STARTTYPE.eq.1) THEN

73 SU=.false.

74 ELSE

75 SU=.true.

76 END IF

77

78 IF (FLOWTYPE.eq.1) THEN

79 PF=.false.

80 ELSE

81 PF=.true.

82 END IF

83

84 end subroutine CALCSHAREDDATA

85 C-----------------------------------

86 C

87

88 end module SHAREDDATA

89 C--

90 C

91

A30

A.5. GATHERING Programme Code

92 C

93 C--

94

95 program GATHERING

96

97 use SHAREDDATA

98

99 implicit none

100

101 real BUFFER (3)

102 double precision XPOS(XG), DUMP , TT,TEND

103 integer XJ,TS,TTI ,TTIOLD ,ERR ,STN ,TMAX

104 character(LEN =14) FNAME

105 logical INTELLIGENT ,TRY

106

107 intelligent =.true.

108

109 call CALCSHAREDDATA

110

111 write (*,*) 'Time of final output (real):'

112 read (*,*) TEND

113 write (*,*) 'Please wait...'

114

115 if (TEND.gt.0) then

116 TMAX = int(TEND/DT)

117 else

118 TMAX = TPTS

119 end if

120

121 131 format(A)

122 130 format(F6.1,' ',F6.1,' ',E22.15,' ',E22.15,' ',E22

.15)

123 open (2,file='txfield.dat ')

124 write (2 ,131) '# VARIABLES = "TT","XPOS","|u_t|","|v_t|","|

vor_t|"'

125 if (TPER.lt.8) then

126 STN = int(TEND)

127 else

128 STN = int(TEND/(TPER /8))

129 end if

130 write (2,*) '# ZONE J=',STN ,' I=',XPTS

131

132 do TS=1,TMAX

A31

A.5. GATHERING Programme Code

133 TT=TS*DT

134 TTI=int(TT)

135 C if (intelligent) then

136 C if (TPER.lt.8) then

137 C if (TTI.gt.TTIOLD) then

138 C TRY=.true.

139 C else

140 C TRY=.false.

141 C end if

142 C else

143 C if ((mod(TS ,(TPER /8)).eq.0) .and. (TTI.gt.TTIOLD))

then

144 C TRY=.true.

145 C else

146 C TRY=.false.

147 C end if

148 C end if

149 C else

150 C TRY=.true.

151 C end if

152 if (TTI.gt.TTIOLD) TRY=.true.

153 TTIOLD=TTI

154 if (TS.eq.TMAX) TRY=.true.

155 if (TRY) then

156 FNAME (1:10)='centvt0000.dat '

157 if ((TT.ge.1).and.(TT.lt.10)) then

158 write(FNAME (10:10) ,'(I1)') TTI

159 elseif ((TT.ge.10).and.(TT.lt.100)) then

160 write(FNAME (9:10) ,'(I2)') TTI

161 elseif ((TT.ge.100).and.(TT.lt .1000)) then

162 write(FNAME (8:10) ,'(I3)') TTI

163 elseif (TT.ge .1000) then

164 write(FNAME (7:10) ,'(I4)') TTI

165 end if

166 write(FNAME (11:14) ,'(A4)') '.dat '

167 open (1,file=FNAME ,iostat=ERR)

168 if (ERR.eq.0) then

169 C SUCC=SUCC+1

170 read (1,*)

171 read (1,*)

172 write (2,*)

173 do XJ=1,XPTS

174 read (1,*) XPOS(XJ),BUFFER (1),BUFFER (2),BUFFER (3)

A32

A.6. Unix Shell Script for LINSTAB Runs and Processing Associated Data

175 write (2 ,130) TT,XPOS(XJ),BUFFER (1),BUFFER (2),BUFFER

(3)

176 end do

177 end if

178 close (1)

179 end if

180 end do

181

182 close (2)

183 C open (2,file='txfield.dat ',position='rewind ')

184 C write (2 ,131) 'VARIABLES = "TT","XPOS","u_t","v_t","vor_t"'

185 C write (2,*) 'ZONE I=',SUCC ,' J=',XPTS

186 C close (2)

187 write (*,*) 'Done.'

188

189 end program GATHERING

190 C--

191 C

A.6. Unix Shell Script for LINSTAB Runs and Processing
Associated Data

A.6.1. batchlin.sh Script to be Performed on a1.hww.de

1 for alpha in 0.001 0.010 0.020 0.030 0.040 0.050 0.060 0.070

0.080 0.090 0.100 0.110 0.120 0.130 0.140

2 do

3 rm baseflow_in_000.setup

4 echo "# SETUPFILE FOR LINSTAB" >> baseflow_in_000.setup

5 echo "# ---------------------" >> baseflow_in_000.setup

6 echo "" >> baseflow_in_000.setup

7 echo "# GENERAL SPECIFICATIONS" >> baseflow_in_000.setup

8 echo "<version > 1.0" >> baseflow_in_000.setup

9 echo "<program type > linstab" >> baseflow_in_000.setup

10 echo "" >> baseflow_in_000.setup

11 echo "# PATH SPECIFICATIONS" >> baseflow_in_000.setup

12 echo "<code directory > /nfs/home6/HLRS/iag/iagjanis/code/

linstab/aktuell" >> baseflow_in_000.setup

13 echo "<baseflow directory > /nfs/home6/HLRS/iag/iagjanis/daten

/0.75 presflow /1000" >> baseflow_in_000.setup

14 echo "<output directory > /nfs/home6/HLRS/iag/iagjanis/daten

/0.75 presflow /1000/${alpha}" >> baseflow_in_000.setup

A33

A.6. Unix Shell Script for LINSTAB Runs and Processing Associated Data

15 echo "" >> baseflow_in_000.setup

16 echo "# JOB SPECIFICATIONS" >> baseflow_in_000.setup

17 echo "<jobname > baseflow_in_000" >>

baseflow_in_000.setup

18 echo "<queue > dq" >> baseflow_in_000.setup

19 echo "<cputime > 00:01:00" >> baseflow_in_000.setup

20 echo "<memory > 1gb" >> baseflow_in_000.setup

21 echo "<account > iag02307" >> baseflow_in_000.setup

22 echo "<email > iagjanis@iag.uni -stuttgart.de" >>

baseflow_in_000.setup

23 echo "" >> baseflow_in_000.setup

24 echo "# INPUT PARAMETRS" >> baseflow_in_000.setup

25 echo "<y resolution > 301" >> baseflow_in_000.setup

26 echo "<dydeta > 1.0" >> baseflow_in_000.setup

27 echo "<flow pattern > 0" >> baseflow_in_000.setup

28 echo "<x index > 221" >> baseflow_in_000.setup

29 echo "<alpha_r > ${alpha}" >> baseflow_in_000.setup

30 echo "<alpha_i > 0.0" >> baseflow_in_000.setup

31 echo "<gamma_r > 0.0" >> baseflow_in_000.setup

32 echo "<gamma_i > 0.0" >> baseflow_in_000.setup

33 mkdir ~/daten /0.75 presflow /1000/${alpha}

34 linstab baseflow_in_000.setup

35 done

A.6.2. kc.sh Script to be Performed on a1.hww.de

1 for alpha in 0.001 0.010 0.020 0.030 0.040 0.050 0.060 0.070

0.080 0.090 0.100 0.110 0.120 0.130 0.140

2 do

3 mv ~/daten /0.75 presflow /1000/${alpha}/ baseflow_in_000 /*.eas

~/daten /0.75 presflow /1000/${alpha}/

4 rm -R ~/daten /0.75 presflow /1000/${alpha}/ baseflow_in_000 /*

5 rmdir ~/daten /0.75 presflow /1000/${alpha}/ baseflow_in_000

6 eas2tec ~/daten /0.75 presflow /1000/${alpha }/*. eas

7 rm ~/daten /0.75 presflow /1000/${alpha}/ spektrum.eas

8 done

A.6.3. iagcp.sh Script to be Performed on a1.hww.de

1 for alpha in 0.001 0.010 0.020 0.030 0.040 0.050 0.060 0.070

0.080 0.090 0.100 0.110 0.120 0.130 0.140

2 do

3 scp ~/daten /0.75 presflow /1000/${alpha}/ spektrum.plt cipserv.

A34

A.6. Unix Shell Script for LINSTAB Runs and Processing Associated Data

iag.uni -stuttgart.de:~/ daten /0.75 presflow /1000/${alpha}/

4 done

A.6.4. catchiag.sh Script to be Performed on cipserv.iag.uni-stuttgart

1 for alpha in 0.001 0.010 0.020 0.030 0.040 0.050 0.060 0.070

0.080 0.090 0.100 0.110 0.120 0.130 0.140

2 do

3 mkdir ~/daten /0.75 presflow /1000/${alpha}

4 done

A35

	Disturbance evolution in the near-wake behind a flat plate
	Aufgabenstellung
	Übersicht
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	I. Introduction
	The Subject
	Objective of This Thesis

	II. Main Part
	1. Theoretical Background
	1.1. Basic Flow Properties
	1.1.1. Flow Decomposition and Terminology
	1.1.2 Non-dimensionalisation of Variables
	1.1.3. Reynolds Number

	1.2. Governing Equations
	1.2.1. Navier-Stokes Equations in Velocity-Vorticity Formulation
	1.2.2 Equivalence with the Navier-Stokes Equations in Primitive Variables Formulation

	1.3. Boundary Conditions and Symmetry
	1.3.1. Symmetric and Antisymmetric Decomposition
	1.3.2. Derivation of the Boundary Conditions

	1.4. Boundary Layer Thickness
	1.5. Reynolds Number Relations
	1.6. Base Flow Calculation
	1.7. Wake Flow and Prescribed Mean Flow
	1.8. Stability of Fluid Flow
	1.8.1. Modal Expansion
	1.8.2. Stability Analysis
	1.8.3. Spatial and Temporal Stability

	2. Numerical Approach
	2.1. Discretisation
	2.1.1. Streamwise Discretisation and Timestepping
	2.1.2. Wall-Normal Discretisation

	2.2. Solution Scheme of the PCNAVWAKEBD Code
	2.2.1. Predictor Step
	2.2.2. Solution of the Poisson Equation
	2.2.3. Corrector Step

	2.3. Introduction of Disturbances
	2.4. Symmetric and Antisymmetric Decomposition
	2.5. Inflow and Outflow Conditions
	2.6. PRESCMF Wakeflow Module
	2.7. Other Extensions and Changes to the PCNAVWAKE Programme Code
	2.8. Post-processing Programmes

	3. Realisation of Simulations
	3.1. Choice of Numerical Parameters
	3.1.1. Stream-wise Grid Step Size and Time Step Size
	3.1.2. Domain Length and Forcing Location
	3.1.3. Forcing Length Scale and Mapping Constant
	3.1.4. Number of Iterations per Time Step
	3.1.5. Order of Chebyshev Polynomials
	3.1.6. Outflow Condition
	3.1.7. Relaxation Parameter and Initial Value for Next Time Step
	3.1.8. Forcing Amplitude

	3.2. Implementation for Grid Computing
	3.3. Identification of Wavenumber
	3.4. Examples of Physical Interpretations

	4. Trailing Edge Structure
	4.1. Theoretical Reasoning
	4.2. Triple-Deck Scalings
	4.3. Comparison of Numerical Results with Asymptotic Theory
	4.3.1. Scaling and Structures
	4.3.2. Centreline Velocity
	4.3.3. Pressure

	5. Stability Analysis
	5.1. Idea and Approach
	5.2. Numerical Method
	5.3. Realisation of Numerical Analysis
	5.4. Results
	5.4.1. Simulated and Prescribed Flow Stability Properties
	5.4.2. Variation with Profile Velocity Ratio
	5.4.3. Reynolds Number Dependence
	5.4.4. Mach Number Dependence
	5.4.5. Eigenfunctions

	5.5. Further Reading

	6. Conclusion and Outlook

	III. Résumé
	Bibliography
	Appendix
	A.1. PRESCMF Module Code
	A.2. Unix Shell Script for Launching Condor Grid Computing Jobs
	A.2.1. batchcmd.sh
	A.2.2. inputbatch.dat

	A.3. Miscellaneous Changes to the PCNAVWAKE Programme Code
	A.3.1. outputall Module Code
	A.3.2. startupparams Module Code

	A.4. POSTPROCESSING Programme Code
	A.5. GATHERING Programme Code
	A.6. Unix Shell Script for LINSTAB Runs and Processing Associated Data
	A.6.1. batchlin.sh Script to be Performed on a1.hww.de
	A.6.2. kc.sh Script to be Performed on a1.hww.de
	A.6.3. iagcp.sh Script to be Performed on a1.hww.de
	A.6.4. catchiag.sh Script to be Performed on cipserv.iag.uni-stuttgart.de

